

SIDE-CHANNEL ATTACKS ON IMPLEMENTATIONS OF CRYPTOGRAPHIC ALGORITHMS

Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın

Istanbul Technical University

Department of Electronics and Communication Engineering

Motivation

- For implementations of cryptographic algorithms, not only the speed and the size of the circuit, but also their security against implementation attacks such as side-channel attacks are important.
- Side-channel attacks are mentioned in Common Methodology for Information Technology Security Evaluation.

Introduction

A side-channel analysis attack takes advantage of implementation specific characteristics

Divided into two groups as

- active (tamper attacks): the attacker has to reach the internal circuitry} of the cryptographic device
 - probing attack: inserting sensors into the device
 - fault induction attack: disturbing the device's behavior
- passive: The physical and/or electrical effects of the functionality of the device are used for the attack

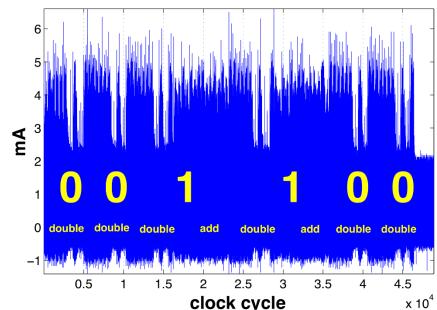
Passive Attacks

If physical and/or electrical effects unintentionally deliver information about the key, then they deliver side-channel information and are called side-channels.

Four groups according to the side-channel information that they exploit:

Timing Analysis Attack

Power Analysis Attack

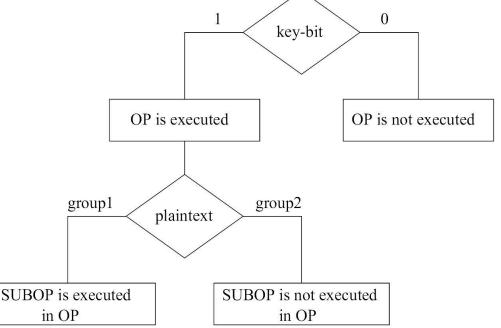

- □ Simple Power Analysis (SPA)
- Differential Power Analysis (DPA)

Electromagnetic Analysis attacks

- □ Simple Electromagnetic Analysis (SEMA)
- Differential Electromagnetic Analysis (DEMA)
- Fault based attacks

Simple Attacks

- An attacker uses the side-channel information from one measurement directly to determine (parts of) the secret key.
- A simple analysis attack exploits the relationship between the executed operations and the
 - side-channel information.



Differential Attacks

- Many measurements are used in order to filter out noise.
- A differential analysis attack exploits the relationship between the processed data and the side-channel information.
 - hypothetical model of the attacked device: The model is used to predict several values for the side-channel information of a device.
 - These predictions are compared to the real, measured side-channel information of the device.
 - Comparisons are performed by applying statistical methods on the data.

Timing Analysis Attack

- The differences in the processing time of a hardware or software system may vary with the code sequence and processed data sets. Checking time may in unsecured systems retrieve secret information.
 - □ If the test of specific values and a following dependent branch in the program code is not secured.

Timing Analysis Attack (Cont.)

- the Hamming weight of the key: when the execution time depends on the secret key \rightarrow only one measurement needed
- EC point Multiplication

 $Q \leftarrow P$ for i from I-2 downto 0 $Q \leftarrow 2Q$ if k_i=1

$$Q \leftarrow Q + P$$

Execution time of one point multiplication:

 $T_{PMUL}=(I-1)T_{PDB}+(w-1)T_{PAD}$ (w= Hamming weight of the key)

Countermeasure for Simple Timing Attack

- Input: EC point P=(x,y), integer k, 0 < k < M, $k=(k_1, k_2, ..., k_{l-1})_2$, $k_{l-1}=1$ and M
- Output: Q=[k]P=(x',y')
 - $\Box \quad Q = P$
 - □ for *i* from *I*-2 downto 0
 - $Q_1 = 2Q$

$$Q_2 = Q_1 + P$$

If
$$k_i = 0$$

 $\Box \quad Q = Q_1$

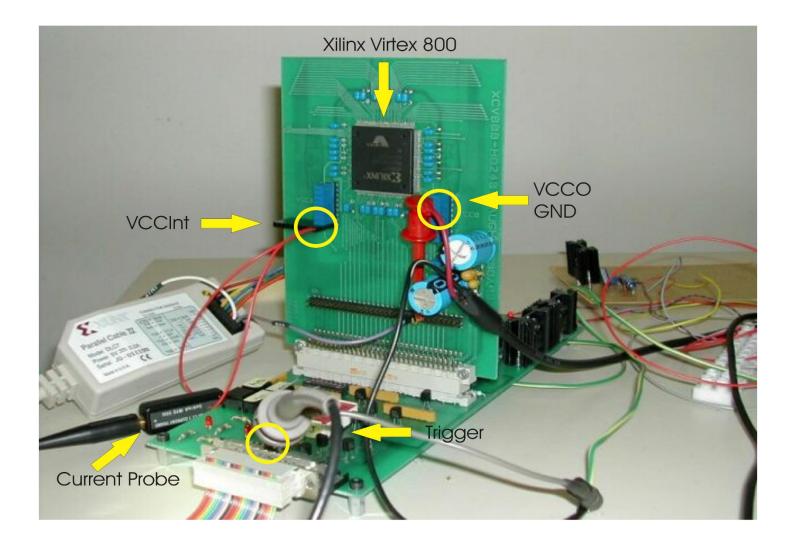
- else
 - $\Box \quad Q = Q_2$
- The latency of one point multiplication:
- $\bullet T_{PMUL} = (I-1) (T_{PDB} + T_{PAD})$

Differential Timing Attack on a Hardware Implementation of AES (1/2)

- The input of the first S-Box operation in the first round is the first byte of the output of the
- AddRoundKey(Plaintext,Key)=Plaintext xor Key.
- S-Box Operation in AES
- Input: one byte in
- Output: out=S-Box(in)
- Step1: out=AffTrans(in)
- Step2: If out=0
 - □ Step3: out=0
- Else
 - □ Step4: out=MultInv(out)

DTA on a Hardware Implementation of AES (2/2)

- Step 3 is executed in shorter time than Step 4. The attacker's steps:
 - 1. Feed the hardware with *N* plaintexts
 - 2. Measure the time which takes for encrypting each of them and form a N \times 1 matrix M₁ with these timing data.
 - 3. Calculate Plaintext xor Key for *N* plaintexts for each possible 256 values of the first byte of the key and for each plaintext.
 - 4. Form a N × 256 matrix M_2 with the expected time of Sbox (AffTrans(Plaintext xor Key) operation.
 - 5. Now the attacker should find the correlation between M_1 and each column of M_2 . The highest correlation will give the right first byte of the key.

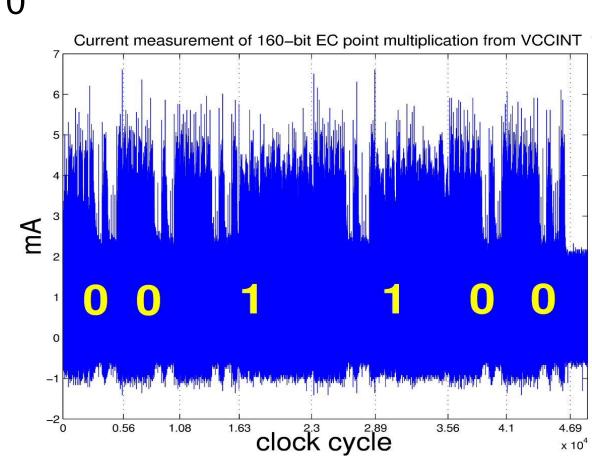

Power Attacks

- The dominating factor for the power consumption of a CMOS gate is the dynamic power consumption:
- $\bullet \mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{L}} \mathsf{V}_{\mathsf{D}\mathsf{D}}^{2} \mathsf{P}_{0 \rightarrow 1} \mathsf{f}$

Power Attacks

- We will observe a current only during the 0 → 1 transition at the output of the circuit.
- This transition depends on the input of the circuit, so the processed data in the gate.
- By observing the current consumption of a circuit we can learn some information about the processed data.
- If this data has some relation with the secret information than we gain some information about the secret.

Measurement Setup


Simple Power Analysis Attack (SPA)

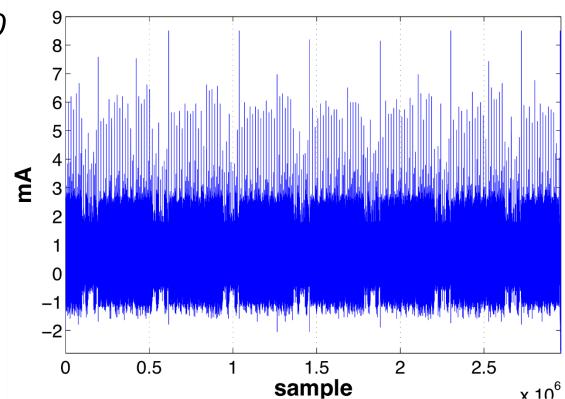
EC point Multiplication

 $Q \leftarrow P$ for i from I-2 downto 0

$$Q \leftarrow 2Q$$

if $k_i=1$
 $Q \leftarrow Q+P$

point double and add consume different power

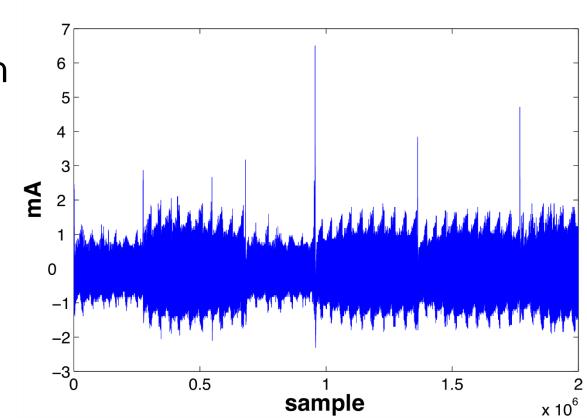


Countermeasure for SPA on an Implementation of ECC

- Input: EC point P=(x,y), integer k, 0 < k < M, k=(k₁, k₂,..., k_{l-1})₂, k_{l-1}=1 and M
- Output: Q = [k]P = (x', y') $\Box Q = P$
 - □ for *i* from *I-2* downto *0*
 - Q₁ = 2Q
 Q₂ = Q₁ + P
 - If $k_i = 0$ $\Box Q = Q_1$

else

 $\Box Q = Q_2$


Differential Power Analysis of an Implementation of ECC

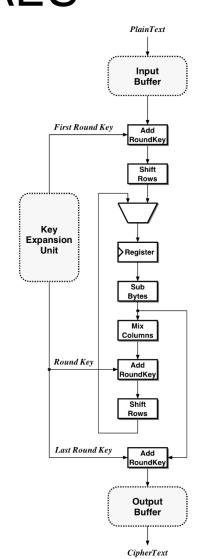
• The target is k_{l-2} . • The points Q_1 , Q_2 and Q are updated as: $\square Q = P$ $\Box Q_1 = 2Q = 2P$ $\Box Q_2 = Q_1 + P = 3P$ □ If k_{I-2}=0 Q changes from P to 2P else Q changes from P to 3P

Correlation Analysis (1/2)

- Chosen N random points on the EC
- FPGA executes N point multiplications such that Q_i=[k]P_i
- measured the

power consumption
produced a
matrix, M₁

Correlation Analysis (2/2)

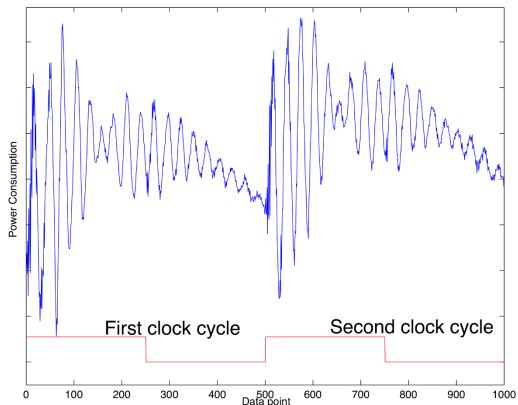

- Compute *N* EC point multiplications
- Compute the number of bit transitions from 0 to 1 in Q
 - \Box for $k_{l_2} = 0$: the number of transitions between P to 2P, (M₂)

 \Box for $k_{l-2} = 1$: the number of transitions between P to 3P, (M₃)

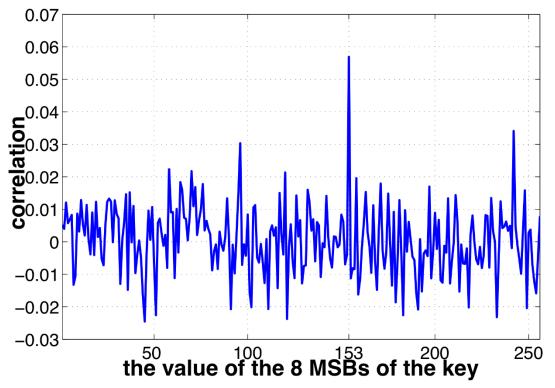
If the correlation 0.5 guess: key-bit=0 between M_1 and M_2 is guess: key-bit=1 0.4 higher than the correlation correlation between M_1 and M_3 , $k_{l-2} = 0$, otherwise $k_{l-2} = 1$ 0.1 20006000 8000 10000 4000mbe

measurements

DPA on an ASIC Implementation of the AES

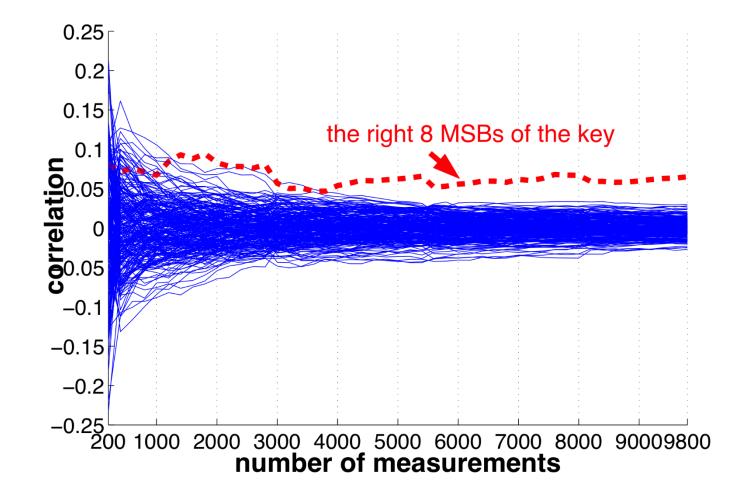


Fastcore was designed by ETH Zurich


The target for our DPA attack are the most significant byte of the Register

Power Consumption of 1 Encryption with Fastcore

- Encrypt N plaintexts with a random but fixed key.
- Measure the
- current consumption
- Calculate the
 mean value of the
 data



Results of the Correlation Analysis

- The highest correlation occurs at i=153
- This value corresponds to the 8 MSBs of the key.

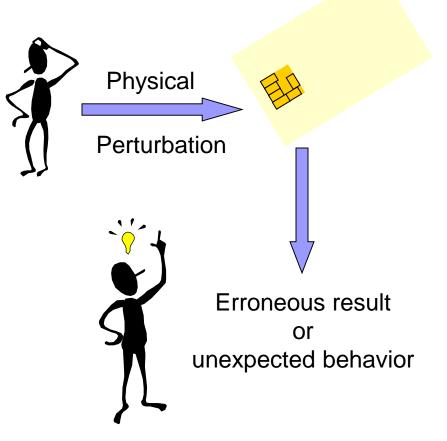
Finding the required number of measurements

Countermeasures

Software

- Time randomization
- Permuting the execution
- Masking techniques

Hardware


- Increasing the measurement noise by a random number generator (RNG) (Kocher 1999)
- Power signal filtering (Shamir 2000 and Coron, Goubin 2000)
- Novel circuit designs
 - Detachable power supplies (Shamir 2000)
 - Logic level (Tiri and Verbauwhede 2003)
 - Asynchronous circuits (Fournier \emph{et. al} 2003)
- □ Reversible logic (Golic 2003)

Fault Based Attacks

A successful fault attack requires two steps:

the fault injection

- Electrical; Vcc glitch, clock
- □ Light-Beam
- Electromagnetic field
- the fault exploitation
 - Operation system and
 Application sensitive process
 - Cryptographic algorithm

