Symmetric cryptography

Alice
Eve
Bob

Modes Of Encryption (1/4, A)
Electronic Code Book (ECB)

Modes Of Encryption (1/4, B)

ECB: properties

- ciphertext blocks independent
- does not hide patterns and repetitions
- errors: expansion within 1 block
- limited number of applications

Modes Of Encryption (2/4, A)

OFB: Synchronous stream cipher

$n=$ block length, $n_{1}=\#$ of feedback bits $n_{1}<n, m=\#$ of selected key stream bits

Modes Of Encryption (2/4, B)

Output Feed Back (OFB): properties

- no linking between subsequent blocks
- one-time $I V$ necessary; otherwise insecure
- uses only encryption
- if $m<n$: more effort per bit
- key stream independent of plaintext: can be precomputed
- no error propagation: errors are only copied

Modes Of Encryption (3/4, A)

CFB: Self-synchronising stream cipher

$n=$ block length, $m=\#$ of feedback bits

Modes Of Encryption (3/4, B)

Cipher Feed Bak (CFB): properties

- ciphertext depends on all previous plaintext blocks
- one-time $I V$ hides patterns and repetitions
- uses only encryption
- if $m<n$: more effort per bit
- error propagation: error copied and propagated block

Modes Of Encryption (4/4, A)

Modes Of Encryption (4/4, B)

Cipher Block Chaining (CBC): properties

- ciphertext depends on all previous plaintext
- one-time $I V$ hides patterns and repetitions
- error propagation: expansion in 1 block, copied into next block
- decryption of 1 block requires ciphertext of previous and current block

Padding before encryption

- What? Extra bits are appended to the plaintext
- Why? To assure that the plaintext has a fixed format and to make its length a multiple of the block size
- How? A message of n bytes is converted into a message of $n+(b-$ $(n \bmod b))$ bytes:
- original plaintext consists of n bytes,
- encryption algorithm's blocklength equals b,
- the value of the $b-(n \bmod b)$ padding bytes equals $b-(n \bmod b)$
- Examples: Given $b=16$, and $n=15$, a single byte is padded with the value 1. If $n=4$, twelve bytes are padded with the value 12 , and if $n=32,16$ bytes are padded with the value 16 .

Secret Key \leftrightarrow Public Key

- key agreement

How can 2 people who have never met share a key which is only known to these 2 people

- digital signature

How can one be sure that a message comes from the sender who claims to have produced that message?

Problem 1: Key-Agreement (1/4)

Diffie-Hellman Key Agreement Protocol

($f(X, Z)$: commutative one way function)

$$
\begin{array}{lll}
\text { Alice } \\
Y_{A}=f\left(X_{A}, Z\right) \\
& \stackrel{Y_{A}}{\longrightarrow} & \\
& Y_{B} & \\
K_{A B}=f\left(X_{A}, Y_{B}\right)=f\left(X_{A}, f\left(X_{B}, Z\right)\right) & & Y_{B}=f\left(X_{B}, Z\right) \\
& & K_{B A}=f\left(X_{B}, f\left(X_{A}, Z\right)\right)
\end{array}
$$

Key-Agreement (2/4)

One Way functions

$$
f: X \longrightarrow Y ; x \mapsto f(x)=y \text { is a one way function } \Longleftrightarrow
$$

- $f(x), \forall x \in X$ is easy to compute
- given $y \in Y$, finding an $x \in X$, with $f(x)=y$ is a hard problem

We will use modular exponentiation as one-way function

Key-Agreement (3/4)

Modular Exponentiation

- given α and a prime p with $\alpha \in[1, p-1]$
- $w=\alpha^{x} \bmod p$ can be computed efficiently (square and multiply)

Inverse operation (discrete logarithm)

- given α, p and w, find x such that

$$
\alpha^{x} \bmod p \equiv w
$$

Key-Agreement (4/4)

Diffie-Hellman - example

- $p=37$: the integers from 0 to 36 form a field with + and $\times \bmod 37$
- $\alpha=2$ is a generator of the non-zero elements: powers of 2 generate all non-zero elements: $2^{0}=1,2^{1}=2,2^{3}=8,2^{4}=16,2^{5}=32,2^{6}=27$, $2^{7}=17, \ldots, 2^{36}=1$
- $X_{A}=10 \Rightarrow Y_{A}=2^{10} \bmod 37=25$
- $X_{B}=13 \Rightarrow Y_{B}=2^{13} \bmod 37=15$
- $K_{A B}=\left(Y_{B}\right)^{X_{A}}=15^{10} \bmod 37=15^{8+2} \bmod 37=7 \times 3 \bmod 37=21$
- $K_{B A}=\left(Y_{A}\right)^{X_{B}}=25^{13} \bmod 37=25^{8+4+1} \bmod 37=34 \times 16 \times 25 \bmod$ $37=21$
- $K_{A B}=K_{B A}=21$

Secret key derivation

- Why? Two different keys are necessary: encryption key and MAC key
- How? Two steps:
- First Diffie-Hellman/Station to Station agreement on shared secret
- Derivation of two different keys, e.g., using a hash function, the shared secret and for each key a different string
- Advantage? Ciphertext blocks are different from intermediate results during MAC computation

Problem 2: Public-key cryptography (1/3)

(trapdoor one-way functions)

Bob
Eve
Alice

Public-key cryptography (2/3)

RSA public-key algorithm

trapdoor one-way function:

- given x : "easy" to compute $f(x)$
- given $f(x)$: "hard" to compute x
- given $f(x)$ and the trapdoor information: finding x is "easy"
given two large primes p and q and a public key (e, n)
$n=p \times q$ (factoring n is hard)

$$
f(x)=x^{e} \bmod n \text { is a trapdoor one-way function }
$$

trapdoor information (p, q) allows to find a private key (d, n) such that

$$
\left(x^{e}\right)^{d}=\left(x^{e}\right)^{1 / e}=x \bmod n
$$

Public-key cryptography (3/3)

RSA public-key algorithm (2): detail
key generation:
choose two primes p and q
$n=p \times q, \phi(n)=(p-1)(q-1)$
choose e prime w.r.t. $\phi(n)$
compute $d=e^{-1} \bmod \phi(n)$

$$
\begin{gathered}
\text { public key }=(e, n) \\
\text { private key }=(d, n) \text { or }(p, q)
\end{gathered}
$$

encrytion: $c=m^{e} \bmod n$
decrytion: $m=c^{d} \bmod n$

Data Authentication (1/2)

What

- data integrity: authentication of content
- data-origin authentication: authentication of sender
- data destination authentication
- time and sequence

Application Areas

- financial transactions
- electronic mail
- computer viruses

Data Authentication (2/2)

two levels

1. symmetric authentication:
within group of persons who trust each other
2. asymmetric authentication (digital signature):

- can be verified by third party
- depends on knowledge of the signer's private key

Hash function(1/2)

Definition - hash function

```
they can be reduced to 2 classes
based on linear transformations of
variables. The properties of these
12 schemes with respect to weak-
nesses of the underlying block cipher
are studied. The same approach
can be extended to study keyed hash
functions (MACs) based on block ci-
phers and hash functions based on
modular arithmetic. My brother is in
the audience. Finally a new attack is
presented on a scheme suggested by
R. Merkle. This slide is now shown
at the 2001 ESAT Course in a pre-
sentation on the state of hash func-
tions and MAC algorithms.
```


Hash function(2/2)

MDC (Modification Dedection Code):
Hash function without key

- compression to fixed length
- preimage resistant:
hard to find an X^{\prime} with $h\left(X^{\prime}\right)=Y$, given $Y=h(X)$
- 2nd preimage resistant:
hard to find $X^{\prime} \neq X$ with $h\left(X^{\prime}\right)=h(X)$, given X and $h(X)$
- collision resistant:
hard to find $X^{\prime}, X^{\prime} \neq X$ with $h\left(X^{\prime}\right)=h(X)$

Message Authentication Codes (1/3)

MAC (Message Authentication Code):
Hash function with secret key

- hard to produce a forgery
- can only be generated and verified by someone who secret MAC-key
- do not use the same key for MAC and for encryption

Message Authentication Codes (2/3)

MAC = hash function with secret key

Message Authentication Codes (3/3)

MAC based on block cipher: retail MAC

Digital Signature

signature generation uses signer's private key signature verification uses signer's public verification key

RSA-signatures with message recovery

For short messages (up to the modulus length - 4 bytes)

- the signer
- adds redundancy to the message $h: h^{\prime}=0 x 00,0 x 01,0 x F F, \cdots, 0 x F F, 0 x 00$
- computes $c=\left(h^{\prime}\right)^{d} \bmod n$ using his private key (d, n)
- the verifier
- receives a digital signature c^{\prime}
- computes $h "=\left(c^{\prime}\right)^{e} \bmod n$ using the public key (e, n)
- checks whether the redundancy in h " equals $0 x 00,0 x 01,0 x F F, \cdots, 0 x F F, 0 x$
- strips the redundancy, recovering h
- believes that h comes from the signer

RSA-signature with appendix

For large messages (longer than the modulus length - 4 bytes)

- the signer
- computes the hash value h on a message m
- applies the previous signing method to compute the digital signature c on h
- the signer sends m together with the signature c to the verifier
- the verifier
- receives a message m^{\prime} and a digital signature c^{\prime}
- recovers h from the previous verification method, and
- computes the hash value $h^{\prime \prime \prime}$ on the message m^{\prime}, and
- believes that m^{\prime} comes from the signer if h equals $h^{\prime \prime \prime}$

Station to Station (STS) Protocol

Alice
Bob
generate secret x
$\alpha^{x} \bmod p$
$\longrightarrow \quad$ generate secret y
$\alpha^{y} \bmod p, E_{k}\left(S_{B}\left(\alpha^{y}, \alpha^{x}\right)\right) \quad$ compute secret key k
compute secret key k validate signature

$$
E_{k}\left(S_{A}\left(\alpha^{x}, \alpha^{y}\right)\right)
$$

validate signature

STS Protocol: properties

- both parties know who the other party is
- both parties know that the other party is active (alive)
- both parties are sure that the other party has computed a shared k
- anonymity (if no certificates are sent in the clear)
- perfect forward secrecy: even if the long term signature keys are compromised, one learns nothing about previous session keys
- leakage of k does not compromise long-term keys

