CRYPTOGRAPHY

Prof. Dr. Sıddıka Berna Örs Yalçın

Room Number: 2318
email: siddika.ors@itu.edu.tr
web page: http://web.itu.edu.tr/~orssi/

References

1. Douglas R. Stinson, Cryptography Theory and Practice, Third Edition, CRC Press, November 2005.
2. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, ISBN: 0-8493-8523-7, October 1996, 816 pages.
3. Simon Singh, Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography, Westminster, MD, USA: Anchor, 2000. p xv.

Content

1. Classical cryptography: introduction: some simple cryptosystems
2. Cryptanalysis of simple cryptosystems
3. Shannon's theory: probability theory, entropy, properties of entropy
4. Product cryptosystems
5. Block ciphers: substiturion-permutation network
6. Linear cryptanalysis
7. Differential cryptanalysis
8. The data encryption standard (DES)
9. Advanced encryption standard (AES), modes of operation
10. Hash functions: collision-free hash functions, authentication codes
11. The RSA system and factoring: introduction to public-key cryptography
12. Public-key cryptosystems based on discrete logarithm problem: the EIGamal cryptosystem
13. Finite field and elliptic curve systems
14. Signature schemes: introduction, the ElGamal signature scheme
15. The digital signature algorithm (DSA), the elliptic curve digital signature algorithm (ECDSA)

Grading

1st Homework	3rd week	15%
2nd Homework	7th week	15%
Midterm	8th week	15%
3rd Homework	11 th week	15%
Final		40%

History of Cryptography

	1	2	3	4	5
1	A	B	C	D	E
2	F	G	H	I	J
3	K	L	M	N	O
4	P	Q	R	S	T
5	U	V	W	X	Y / Z

Polybius Square - Greek method

Steganography

Secret communication achieved by hiding the existence of a message is known as steganography, derived from the Greek words steganos, meaning "covered" and graphein, meaning "to write".

- physically concealed beneath wax on wooden tablets
- a tattoo on a slave's head concealed by regrown hair

Cryptography

- Cryptography was derived from the Greek word kryptos, meaning "hidden".
- The aim of cryptography is not to hide the existence of a message, but rather to hide its meaning, a process known as encryption.
- To render a message unintelligible, it is scrambled according to a particular protocol which is agreed beforehand between the sender and the intended recipient.
- The advantage of cryptography is that if the enemy intercepts an encrypted message, then the message is unreadable.
- Without knowing the scrambling protocol, the enemy should find it difficult, if not impossible, to recreate the original message from the encrypted text.

Singh, Simon. Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography. Westminster, MD, USA: Anchor, 2000. p 6. http://site.ebrary.com/lib/ istanbulteknik/Doc?id=10235313\&ppg=28 Copyright (C)2000. Anchor. All rights reserved.

Usage of Cryptography (1/2)

- Past
- Military, Diplomatic Service, Government
- was used as a tool to protect national secrets and strategies
- Now
- Private sector
- is used to protect information in digital form and to provide security services

Usage of Cryptography (2/2)

Although cryptography is now having a major impact on civilian activities, it should be noted that military cryptography remains an important subject.

It has been said that

- the First World War was the chemists' war, because mustard gas and chlorine were employed for the first time
- the Second World War was the physicists' war, because the atom bomb was detonated
- the Third World War would be the mathematicians' war, because mathematicians will have control over the next great weapon of war - information. Mathematicians have been responsible for developing the codes that are currently used to protect military information. Not surprisingly, mathematicians are also at the forefront of the battle to break these codes.

Singh, Simon. Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography. Westminster, MD, USA: Anchor, 2000. p XV. http://site.ebrary.com/lib/ istanbulteknik/Doc?id=10235313\&ppg=19 Copyright (C)2000. Anchor. All rights reserved.

CRYPTOGRAPHY

- is the study of mathematical techniques related to aspects of information security such as
- confidentiality,
- data integrity,
- entity authentication,
- data origin authentication.
- is about the prevention and detection of cheating and other malicious activities.

Basic Terminology: Domains

The cryptosystem is a five- tuple $\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}$

- \mathcal{P} : a set called the plaintext space.
- $\mathrm{C}:$ a set called the ciphertext space.
- \mathcal{K} : a set called the key space.
- For each $K \in \mathcal{K}$, there is an encryption rule $e_{K} \in \mathcal{E}$ and a corresponding decryption rule $d_{K} \in \mathcal{D}$. Each $e_{K}: \mathcal{P} \rightarrow \mathcal{C}$ and $d_{K}: \mathcal{C} \rightarrow \mathcal{P}$ are functions such that $d_{K}\left(e_{K}(x)\right)=x$ for every element $x \in \mathcal{P}$.

If a cryptosystem is to be of practical use:

1. Each e_{K} and d_{K} should be efficiently computable.
2. An opponent, upon seeing a ciphertext string y should be unable to determine the key K or the plaintext string x.

Shift Cipher

- Let $\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{26}$. For $0 \leq K \leq 25$, define $e_{K}(x)=(x+K) \bmod 26$ and $d_{K}(y)=(y-K) \bmod 26$
- Since there are only 26 possible keys, it is easy to try every possible K until a meaningful plaintext is obtained.
- $K=3 \Longrightarrow$ is called Ceaser cipher (~55 BC)

Caesar Cipher

$$
\begin{array}{|llllllllllllllllllllllllll|}
\hline A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & \times & Y & Z \\
D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & X & Y & Z & A & B & C \\
\hline
\end{array}
$$

Example 1 :

$$
\begin{aligned}
& x=\quad \text { THISCIPHERISCERTAINLYNOTSECURE } \\
& y=e_{K}(x)=\text { WKLVFLSKHULVFHUWDLQOBQRWVHFXUH }
\end{aligned}
$$

Cryptanalysis

The practice of changing ciphertext into plaintext without complete knowledge of the cipher.

First method : Frequency analysis
Although it is not known who first realized that the variation in the frequencies of letters could be exploited in order to break ciphers, the earliest known description of the technique is by the ninth-century scientist Abu Yusuf Ya'qub ibn Is-haq ibn as-Sabbah ibn'omran ibn Ismail al-Kindi. Known as "the philosopher of the Arabs" al-Kindi was the author of 290 books on medicine, astronomy, mathematics, linguistics and music.

His greatest treatise, which was rediscovered only in 1987 in the Sulaimaniyyah Ottoman Archive in Istanbul, is entitled "A Manuscript on Deciphering Cryptographic Messages".

Singh, Simon. Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography. Westminster, MD, USA: Anchor, 2000. p 17. http:// site.ebrary.com/lib/istanbulteknik/Doc?id=10235313\&ppg=39 Copyright © 2000 . Anchor. All rights reserved.

Types of Attacks (1/2)

It was definitively stated in 1883 by the Dutch linguist Auguste Kerckhoffs von Nieuwenhof in his book La Cryptographie militaire:

Kerckhoffs' Principle: The security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security depends only on keeping secret the key.

The aim of the attacker is to read the encrypted messages, which in many cases is achieved by finding the secret key of the system.

The efficiency of the attack is measured by

- the amount of plaintext- ciphertext pairs required,
- time spent for their analysis
- the success probability of the attack

Types of Attacks (2/2)

- Ciphertext- Only
- Known Plaintext
- Chosen Plaintext
- Chosen Ciphertext
- Adaptive Chosen Plaintext or Ciphertext
- Related Key
- Partial Knowledge of the Key

The Goals of Cryptanalytic Attacks (1/2)

- Distinguishing Attacks
- Partial Knowledge of the Plaintext
- Decryption
- Encryption (Forgery)
- Partial Key Recovery
- Total Key Recovery

The Goals of Cryptanalytic Attacks (2/2)

The cipher can be considered broken if:

- its output can be distinguished from a random permutation
- the secret key is found
- it is possible to derive secret elements of a cipher

A cipher is broken, if a person who uses it decides to stop doing so because he/she does not trust its security anymore.

People expect that a good cipher is a one for which the best attack is an exhaustive search for the key.

A cipher is considered broken if a weakness in it is found which requires the changes of the design.

Cryptology

- Cryptanalysis: the study of mathematical techniques to break the system
- Cryptology: cryptography + cryptanalysis
- Cryptosystem: a set of cryptographic primitives, symmetric key and public key

Cryptanalysis of Example 1

WKLVFLSKHULVFHUWDLQOBQRWVHFXUH
VJKUEKQJGTKUEGTVCKPNAPQVUGEWTG U I JTDJPIFSJTDFSUBJOMZOPUTFDVSF THISCIPHERISCERTAINLYNOTSECURE $K=3$

Mono- alphabetic Substitution Cipher

- Let $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{26}$. \mathcal{K} consists of all possible permutations of the 26 symbols. For each permutation $\pi \in \mathcal{K}$, define
$e_{\pi}(x)=\pi(x)$ and $d_{\pi}(y)=\pi^{-1}(y)$ where π^{-1} is the inverse permutation to π.
- If the alphabet is the English alphabet, then the size of the key space is $26!\approx 400,000,000,000,000,000,000,000,000$
- The distribution of letter frequencies is preserved in the ciphertext.

Example

$$
\pi=\begin{array}{llllllllllllllllllllllllll}
A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
B & D & F & H & J & L & N & P & R & T & V & X & Z & C & E & G & I & K & M & O & Q & S & U & W & A & Y
\end{array}
$$

$$
\begin{aligned}
& x=\quad \text { THISCIPHERISCERTAINLYNOTSECURE } \\
& y=e_{\pi}(x)=\text { OPRMFRGPJKRMFJKOBRCXACEOMJFQKJ }
\end{aligned}
$$

Cryptanalysis of Mono- alphabetic Substitution Cipher

 (1/8)
Ciphertext:

VGQBQHWHUXYQVULRZUGVWBUYVHKYZTHXQBNOZYBVYVURVEQBO YQHYVTMXTZRQHULVULYQBZOWBOZGYQBKBYYBOTZGYQBHKEQHM BYYQHYUZYHNZOWRZDKWMBPHWBZDYVGHUXZUBNVTQBTYZWBRV EQBOYQBTBHUWLBYHYYQBVOPBHUVULQBTQZDKWTDMTYVYDYBY QBGZDOYQKBYYBOZGYQBHKEQHMBYUHPBKXGZOHUWTZYQBZYQBO Letter Frequency in the English Language

ETAOINSRHLDCUMFPGWYBVKXJQZ
Letter Frequency in the ciphertext

```
A B CDEFGHIJKLMNOPQRSTUVWXYZ
O13021037003221419204664 2137
```

$e_{\pi}(\mathrm{E})=\mathrm{B}$ or Y and $e_{\pi}(\mathrm{T})=\mathrm{B}$ or Y

Cryptanalysis of Mono- alphabetic Substitution Cipher (2/8)

Digraphs in the ciphertext with B

- - QBQ- - - WBU- - QBN- - YBV- . -
- - QBO- - . . . - - - QBZ- WBO- - - QBKBYYBO

- - - UBN- - QBT- - WBR- - QBO- QBTBH- - LBY- - - QBV- PBH-
- - QBT- - - - YBYQBG- . - - KBYYBO- - QBH-
- - MBY- - PBK- - QBZ- QBO-

The Digraph Frequencies in the English Language
th he an in er on re ed nd ha at en es of nt ea ti to io le is ou ar as de rt ve

Digraph Frequency in the ciphertext with B BG BH BK BN BOBPBRBQBT BU BVBYBZKBLBMBPB QB

1	4	1	2	6	1	1	1	3	1	2	6	3	2	1	3	2	15
TB	UB	WB	YB														
1	1	4	4														

$e_{\pi}(\mathrm{HE})=\mathrm{QB} \Rightarrow e_{\pi}(\mathrm{H})=\mathrm{Q} e_{\pi}(\mathrm{ER})=\mathrm{BO}$ or $\mathrm{BY} \Rightarrow e_{\pi}(\mathrm{R})=\mathrm{O}$ or Y

Cryptanalysis of Mono- alphabetic Substitution Cipher

 (3/8)$$
\begin{aligned}
& \text { The Trigraph Frequencies in the English Language } \\
& \text { the and tha ent ion tio for nde has nce tis oft men } \\
& \text { Trigraphs in the ciphertext such as xQB and Byz } \\
& -\mathrm{GQBQH} \\
& -\mathrm{EQBO} \\
& -\mathrm{YQBHK} \\
& -\mathrm{ZUBNVTQBTYZWBRVEQBOYQBTBHUWLBYH}
\end{aligned}
$$

Cryptanalysis of Mono- alphabetic Substitution Cipher

 (4/8)Digraphs in the ciphertext with \mathbf{Y}

-- - BYU- -- -- -- -- - ZYQ- ZYQ- -
Digraph Frequency in the ciphertext with Y BY DY HY GYKY OY TY UYVYXY YB YD YH YQ YU YV YZ ZY

4	2	2	1	1	3	2	1	2	1	3	1	1	9	2	4	2	4

$e_{\pi}(\mathrm{TH})=\mathrm{YQ} e_{\pi}(\mathrm{ET})=\mathrm{BY} e_{\pi}(\mathrm{TI}$ or TO$)=\mathrm{Y} V$

Cryptanalysis of Mono- alphabetic Substitution Cipher (5/8)

Trigraphs in the ciphertext such as $\mathbf{Y} X y$

The Trigraph Frequencies in the ciphertext such as $Y Q x$ and $Y x y$ $\begin{array}{ccccccccccccc}\text { YBV } & \text { YDY } & \text { YHN } & \text { YHY } & \text { YQV } & \text { YQH } & \text { YQK } & \text { YUH } & \text { YUZ } & \text { YVG } & \text { YVH } & \text { YVT } & \text { YVU } \\ 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text { YVY } & Y Z W & & & & & & & & & & & \\ 1 & 1 & & & & & & & & & & & \end{array}$
$e_{\pi}(\mathrm{THA})=\mathrm{YQH} \Rightarrow e_{\pi}(\mathrm{A})=\mathrm{H}$
$e_{\pi}(\mathrm{TIO}$ or TIS$)=\mathrm{YVG}$ or YVT or $\mathrm{YVU} \Rightarrow e_{\pi}(\mathrm{I})=\mathrm{V}$

Cryptanalysis of Mono- alphabetic Substitution Cipher (6/8)

Digraphs in the ciphertext with H

- - HM - UHP- - - - HU

Digraph Frequency in the ciphertext with H

GH	HK	HM	HN	HP	HU	HW	HX	HY	PH	TH	UH	WH	VH
1	3	2	1	1	5	2	1	2	1	1	1	1	1

$e_{\pi}(\mathrm{AN})=\mathrm{HU} \Rightarrow e_{\pi}(\mathrm{N})=\mathrm{U}$
The Trigraph Frequencies in the ciphertext such as HUx $\begin{array}{cccc}\text { HUL } & \text { HUW } & \text { HUV } & \text { HUX } \\ 1 & 2 & 1 & 2\end{array}$
$e_{\pi}(\mathrm{AND})=\mathrm{HUW}$ or $\mathrm{HUX} \Rightarrow e_{\pi}(\mathrm{D})=\mathrm{W}$ or X

Cryptanalysis of Mono- alphabetic Substitution Cipher

 (7/8)$$
\mathrm{B} \rightarrow \mathrm{E}, \mathrm{Y} \rightarrow \mathrm{~T}, \mathrm{Q} \rightarrow \mathrm{H}, \mathrm{O} \rightarrow \mathrm{R}, \mathrm{H} \rightarrow \mathrm{~A}, \mathrm{~V} \rightarrow \mathrm{I}, \mathrm{~W} \rightarrow \mathrm{D}
$$

I- HEHADA- - THI- - - - - IDE- TIA- T- - A- HE- R- TEITIVGQBQHWHUXYQVULRZUGVWBUYVHKYZTHXQBNOZYBVYVU - I- HERTHATI- -- - - HA- - I- - THE- RDER- - THE- ETTER RVEQBOYQHYVTMXTZRQHULVULYQBZOWBOZGYQBKBYYBO -- - THEA- - HA- ETTHAT- - TA- - RD- - - D- E- ADE- - TI- A TZGYQBHKEQHMBYYQHYUZYHNZOWRZDKWMBPHWBZDYVGH - - - E- I- HE- T- DE- I- HERTHE- EA- D- ETATTHEIR- EAUXZUBNVTQBTYZWBRVEQBOYQBTBHUWLBYHYYQBVOPBHU I- - HE- H- - - D- - - TIT- TETHE- - RTH- ETTER- - THEAVULQBTQZDKWTDMTYVYDYBYQBGZDOYQKBYYBOZGYQBHK - HA- ET- A- E- - - RA- D- - THE- THER-

Cryptanalysis of Mono- alphabetic Substitution Cipher

$$
\mathrm{K} \rightarrow \mathrm{~L}, \mathrm{Z} \rightarrow \mathrm{O}, \mathrm{G} \rightarrow \mathrm{~F}, \mathrm{D} \rightarrow \mathrm{U}, \mathrm{~T} \rightarrow \mathrm{~S}, \mathrm{M} \rightarrow \mathrm{~B}, \mathrm{E} \rightarrow \mathrm{P}, \mathrm{R} \rightarrow \mathrm{C}, \mathrm{U} \rightarrow \mathrm{~N}, \mathrm{X}
$$

$$
\rightarrow \mathrm{Y}, \mathrm{~L} \rightarrow \mathrm{G}, \mathrm{~N} \rightarrow \mathrm{~W}, \mathrm{R} \rightarrow \mathrm{C}, \mathrm{P} \rightarrow \mathrm{M}
$$

IFHEHADANYTHINGCONFIDENTIALTOSAYHEWROTEITIN VGQBQHWHUXYQVULRZUGVWBUYVHKYZTHXQBNOZYBVYVU CIPHERTHATISBYSOCHANGINGTHEORDEROFTHELETTER RVEQBOYQHYVTMXTZRQHULVULYQBZOWBOZGYQBKBYYBO SOFTHEALPHABETTHATNOTAWORDCOULDBEMADEOUTIFA TZGYQBHKEQHMBYYQHYUZYHNZOWRZDKWMBPHWBZDYVGH NYONEWISHESTODECIPHERTHESEANDGETATTHEIRMEAN UXZUBNVTQBTYZWBRVEQBOYQBTBHUWLBYHYYQBVOPBHU INGHESHOULDSUBSTITUTETHEFOURTHLETTEROFTHEAL VULQBTQZDKWTDMTYVYDYBYQBGZDOYQKBYYBOZGYQBHK PHABETNAMELYFORANDSOTHEOTHERS

IF HE HAD ANYTHING CONFIDENTIAL TO SAY HE WROTE IT IN CIPHER THAT IS BY SO CHANGING THE ORDER OF THE LETTERS OF THE ALPHABET THAT NOT A WORD COULD BE MADE OUT IF ANYONE WISHES TO DECIPHER THESE AND GET AT THEIR MEANING HE SHOULD SUBSTITUTE THE FOURTH LETTER OF THE ALPHABET NAMELY FOR AND SO THE OTHERS

Affine Cipher (1/2)

Let $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{26}$ and let
$\mathcal{K}=\left\{(a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26}: \operatorname{gcd}(a, 26)=1\right\}$.

For $K=(a, b) \in \mathcal{K}$, define
$e_{K}(x)=y \equiv(a x+b) \bmod 26$ and $d_{K}(y)=x \equiv a^{-1}(y-b) \bmod 26$.
$a \in \mathbb{Z}_{n}$, multiplicative inverse of $a \bmod n$, denoted $a^{-1} \bmod n . a a^{-1} \equiv 1 \bmod n$.

In order that decryption is possible, for any $y \in \mathbb{Z}_{26}, y \equiv(a x+b) \bmod 26$ must have a unique solution for $x \Longleftrightarrow \operatorname{gcd}(a, 26)=1$

Affine Cipher (2/2)

$y \equiv(a x+b) \bmod 26$ is equivalent to $y-b \bmod 26 \equiv a x \bmod 26$

As $y \in \mathbb{Z}_{26}, y-b \bmod 26 \in \mathbb{Z}_{26}$.

It suffices to study the congruence $y \equiv a x \bmod 26$.

If $\operatorname{gcd}(a, 26)=d>1$, then $0 \equiv a x \bmod 26$ has to distinct solutions in \mathbb{Z}_{26}, namely $x=0$ and $x=\frac{26}{d}$.

In this case $e(x)=a x+b \bmod 26$ is not an injective function and hence not a valid encryption function.

Since $26=2 \times 13, a=1,3,4,7,9,11,15,17,19,21,23,25, b$ can be any element in \mathbb{Z}_{26}. Hence affine cipher has $12 \times 26=312$ possible keys.

Cryptanalysis of the Affine Cipher (1/3)

Ciphertext:

KADHLFMLNMFKVERSLDYAREHFSOORLDYAREHKRWKNHDS

XFSFUUDSRLDYAREDSTADLAMRKKREHFERRSLVORONHDS

XKARUVEPNMFTARERFSOFERTAVMRSNPIREHIRKTRRSFS
OFSODHERMFKDQRMZYEDPR
Letter Frequency in the English Language
ETAOINSRHLDCUMFPGWYBVKXJQZ
Letter Frequency in the ciphertext
ABCDEFGHIJKLMNOPQRSTUVWXYZ
600888051064434201682220120

Cryptanalysis of the Affine Cipher (2/3)

$$
\begin{aligned}
& E_{e}(\mathrm{E})=\mathrm{R} \rightarrow 17 \equiv a 4+b \bmod 26 \\
& E_{e}(\mathrm{~T})=\mathrm{D} \rightarrow 3 \equiv a 19+b \bmod 26 \text { then } a=6, g c d(6,26)=2>1 \\
& E_{e}(\mathrm{~T})=\mathrm{E} \rightarrow 4 \equiv a 19+b \bmod 26 \text { then } a=13, g c d(13,26)=13>1 \\
& E_{e}(\mathrm{~T})=\mathrm{F} \rightarrow 5 \equiv a 19+b \bmod 26 \text { then } a=20, g c d(20,26)=2>1 . \\
& E_{e}(\mathrm{~T})=\mathrm{S} \rightarrow 18 \equiv a 19+b \bmod 26 \text { then } a=7, g c d(7,26)=1 \text { and } b=9 .
\end{aligned}
$$

Decrypted message

PVOWESTEITSPYDQFEORVQDWSFXXQEORVQDWPQNPIWO
FCSFSJJOFQEORVQDOFUVOEVTQPPQDWSDQQFEYXQXIW
OFCPVQJYDMITSUVQDQSFXSDQUVYTQFIMLQDWLQPUQQ

Cryptanalysis of the Affine Cipher (3/3)

$$
E_{e}(\mathrm{~T})=\mathrm{K} \rightarrow 10 \equiv a 19+b \bmod 26 \text { then } a=3, \operatorname{gcd}(3,26)=1 \text { and } b=5 .
$$

Decrypted message

THISCALCULATORENCIPHERSANDDECIPHERSTEXTUSI

NGANAFFINECIPHERINWHICHLETTERSAREENCODEDUS

INGTHEFORMULAWHEREANDAREWHOLENUMBERSBETWEE

NANDANDISRELATIVELYPRIME

THIS CALCULATOR ENCIPHERS AND DECIPHERS TEXT USING AN AFFINE CIPHER IN WHICH LETTERS ARE ENCODED USING THE FORMULA WHERE AND ARE WHOLE NUMBERS BETWEEN AND AND IS RELATIVELY PRIME

Alberti Cipher

All of the Western European governments used cryptography
Venice created an elaborate organization in 1452.
Leon Battista Alberti was known as "The Father of Western Cryptology" in part because of his development of polyalphabetic substitution.

Formula
The larger one is called Stabilis [stationary or fixed], the smaller one is called Mobilis [movable]

Polyalphabetic substitution is any technique which allows different ciphertext symbols to represent the same plaintext symbol.

Vigenère Cipher

$$
\begin{aligned}
& m \geq 0 \text { and } m \in \mathbb{Z} . \\
& \text { Let } \left.\mathcal{P}=\mathcal{C}=\mathcal{K}=\left(\mathbb{Z}_{26}\right)^{m} . \text { For a key } K=\left(k_{1}, k_{2}, \ldots, k_{m}\right)\right) \text {, we define } \\
& e_{K}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(x_{1}+k_{1}, x_{2}+k_{2}, \ldots, x_{m}+k_{m}\right) \\
& d_{K}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)=\left(y_{1}-k_{1}, y_{2}-k_{2}, \ldots, y_{m}-k_{m}\right)
\end{aligned}
$$

Example: $m=6$. The keyword is CIPHER. $K=(2,8,15,7,4,17)$.
message: namedafterblaisedevigenere

13	0	12	4	3	0	5	19	4	17	1	11	0	8	18	4	3	4	21	8	6	4
2	8	15	7	4	17	2	8	15	7	4	17	2	8	15	7	4	17	2	8	15	7
15	8	1	11	7	17	7	1	19	24	5	2	2	16	7	11	7	21	23	16	21	11

ciphertext: piblhrhbtyfccqhIhvxqvIrvtm

The number of possible keywords of length m is 26^{m}.

An alphabetic character can be mapped to one of m possible alphabetic characters.

Cryptanalysis of Vigenère Cipher

The first step is to determine the keyword length, m.

- Kasiski test : 1854 - Charles Babbage and 1863 - Friedrich Kasiski
- the index of coincidence

Kasiski Test

Two identical segments of plaintext will be encrypted to the same ciphertext whenever their occurrence in the plaintext is Δ positions apart, where $\Delta \equiv$ $0 \bmod m$.

- Search the ciphertext for pairs of identical segments of length at least three.
- Record the distance between the starting positions of the two segments.
- If we obtain several such distances, say $\Delta_{1}, \Delta_{2}, \ldots$ we would conjecture that m divides all of the Δ_{i} 's, $m \mid \operatorname{gcd}\left(\Delta_{1}, \Delta_{2}, \ldots,\right)$

The reason this test works is that if a repeated string occurs in the plaintext, and the distance between them is a multiple of the keyword length, m, the keyword letters will line up in the same way with both occurrences of the string.

Example for Kasiski Test (1/2)

ciphertext:
knwllrficfxykvvjsehqsIrkkiaasjcgwlaiqbtpxzpkxwlvtbwhxzujnzstjicnmeibwlsifmgvj
kjmalxkgzhvjkjmpstycjtaxycbcvxrywgkgfwtsiidcltvykknpucfpmlpwygaivhveqeoiiv
ptzirplvlxrvbwlmiompumeiptzlfwtszysubxaykgbwljfwziopvvbtyswvpthpgjiqlxecut scwqzpuhjqbwlskjmgz

Example for Kasiski Test (2/2)

ciphertext string	occurs at (index)	spacing	factors
MEI	64172	108	234691218273654108
BWL	67163	96	23468121624324896
BWL	67193	126	236791418214263126
BWLS	67235	168	2346781214212428425684168
WLS	68236	168	2346781214212428425684168
VJKJM	7587	12	234612
JKJM	7688	12	234612
KJM	7789	12	234612
KJM	77239	162	236918275481162
KJM	89239	150	2356101525305075150
FWTS	113179	66	23611223366
WTS	114180	66	23611223366
VPT	150210	60	23456101215203060
PTZ	151175	24	234681224
BWL	163193	30	2356101530
BWL	163235	72	2346891218243672
BWL	193235	42	2367142142

Keyword length $m=6$.

Index of Coincidence $(1 / 3)$

1920 - Friedman

Definition: Suppose $x=x_{1} x_{2} \ldots x_{n}$ is a string of n alphabetic characters. The index of coincidence of x, denoted by $I_{c}(x)$, is defined to be the probability that two random elements of x are identical.

Suppose the frequencies of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}$ in x are $f_{0}, f_{1}, \ldots, f_{25}$. We can choose two elements of x in $\binom{n}{2}=n(n-1)$ ways. For each $i, 0 \leq i \leq 25$ there are $\binom{f_{i}}{2}=f_{i}\left(f_{i}-1\right)$ ways of choosing both elements to be i.
$I_{c}(x)=\frac{\sum_{i=0}^{25}\binom{f_{i}}{2}}{\binom{n}{2}}=\frac{\sum_{i=0}^{25} f_{i}\left(f_{i}-1\right)}{n(n-1)}=\frac{\sum_{i=0}^{25} f_{i}^{2}-\sum_{i=0}^{25} f_{i}}{n(n-1)}=\frac{\sum_{i=0}^{25} f_{i}^{2}-n}{n(n-1)}$
$n \rightarrow \infty \Rightarrow I_{c}(x) \rightarrow \frac{\sum_{i=0}^{25} f_{i}^{2}}{n^{2}}, p_{i}=\frac{f_{i}}{n}$ then $I_{c}(x) \rightarrow \sum_{i=0}^{25} p_{i}^{2}$

Index of Coincidence (2/3)

letter	probability	letter	probability	letter	probability
A	0.0856	B	0.0139	C	0.0279
D	0.0378	E	0.1304	F	0.0289
G	0.0199	H	0.0528	I	0.0627
J	0.0013	K	0.0042	L	0.0339
M	0.0249	N	0.0707	O	0.0797
P	0.0199	Q	0.0012	R	0.0677
S	0.0607	T	0.1045	U	0.0249
V	0.0092	W	0.0149	X	0.0017
Y	0.0199	Z	0.0008		
$n \rightarrow \infty \Rightarrow I_{c}(x) \approx \sum_{i=0}^{25} p_{i}^{2}=0.065$					

The same reasoning applies if x is a ciphertext string obtained using any monoalphabetic cipher.

Index of Coincidence $(3 / 3)$

$y=y_{1} y_{2} \ldots y_{n}$ constructed by Vigenère Cipher.
m substrings of $y, \overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{m}}$ by writing out the ciphertext in columns in a rectangular array of dimensions $m \times(n / m)$.

Example: $n=15$ and $m=3$

y_{1}	y_{4}	y_{7}	y_{10}	y_{13}
y_{2}	y_{5}	y_{8}	y_{11}	y_{14}
y_{3}	y_{6}	y_{9}	y_{12}	y_{15}

If $I_{c}\left(\bar{y}_{i}\right) \approx 0.065$ then m is the keyword length.

If m is not the keyword length then \bar{y}_{i} s are random
$\sum_{i=0}^{25} f_{i}=n$, in random text $f_{0}=f_{1}=\cdots=f_{25}, 26 f_{i}=n, f_{i}=\frac{n}{26}$,
$I_{c}(x)=\frac{26 f_{i}^{2}}{n^{2}}=\frac{1}{26}=0.038$. The two values 0.065 and 0.038 are sufficiently far apart that we will often be able to determine the correct keyword length.

Permutation Cipher

Alter the plaintext characters positions by rearranging them using a permutation.

Let m be a positive integer. Let $\mathcal{P}=\mathcal{C}=\left(\mathbb{Z}_{26}\right)^{m}$ and let \mathcal{K} consist of all permutations of $1, \ldots, m$. For a key π, we define
$e_{\pi}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{\pi(1)}, \ldots, x_{\pi(m)}\right)$
and
$d_{\pi}\left(y_{1}, \ldots, y_{m}\right)=\left(y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(m)}\right)$
where π^{-1} is the inverse permutation to π.

Example for Permutation Cipher

$$
m=6
$$

Encryption: $\pi=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 2 & 5\end{array}\right)$
plaintext: he walked up and down the passage two or three times
plaintext is divided into groups of 6 :
hewalk edupan ddownt hepass agetwo orthre etimes
ciphertext: WLEHKAUADENPONDDTWPSEHSAEWGAOTTRROEHIETESM
Decryption: $\pi^{-1}=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 1 & 6 & 4\end{array}\right)$

Remarks for Permutation Cipher

The Permutation Cipher is not monoalphabetic.

In the example the first e is encrypted as L, the second e is encrypted as U and the third e is encrypted as S.

This encryption does not change the frequency of alphabetic characters but the positions of the letters.

The different number of keys are m !.

Product Cryptosystems 1/2

introduced by Shannon in 1949

For simplicity; $\mathcal{C}=\mathcal{P}$: endomorphic cryptosystem

Suppose $S_{1}=\left(\mathcal{P}, \mathcal{P}, \mathcal{K}_{1}, \varepsilon_{1}, \mathcal{D}_{1}\right)$ and $S_{2}=\left(\mathcal{P}, \mathcal{P}, \mathcal{K}_{2}, \varepsilon_{2}, \mathcal{D}_{2}\right)$ are two endomorphic cryptosystems.

Product cryptosystem of S_{1} and $S_{2}=S_{1} \times S_{2}=\left(\mathcal{P}, \mathcal{P}, \mathcal{K}_{1} \times \mathcal{K}_{2}, \varepsilon, \mathcal{D}\right)$.

A key of the product cryptosystem: $K=\left(K_{1}, K_{2}\right)$, where $K_{1} \in \mathcal{K}_{1}$ and $K_{2} \in \mathcal{K}_{2}$.
$e_{\left(K_{1}, K_{2}\right)}(x)=e_{K_{2}}\left(e_{K_{1}}(x)\right)$ and $d_{\left(K_{1}, K_{2}\right)}(y)=d_{K_{1}}\left(d_{K_{2}}(y)\right)$.

Product Cryptosystems 2/2

$$
\begin{aligned}
d_{\left(K_{1}, K_{2}\right)}\left(e_{\left(K_{1}, K_{2}\right)}(x)\right) & =d_{\left(K_{1}, K_{2}\right)}\left(e_{K_{2}}\left(e_{K_{1}}(x)\right)\right) \\
& =d_{K_{1}}\left(d_{K_{2}}\left(e_{K_{2}}\left(e_{K_{1}}(x)\right)\right)\right) . \\
& =d_{K_{1}}\left(e_{K_{1}}(x)\right) \\
& =x
\end{aligned} .
$$

Cryptosystems have the probability distributions associated with their keyspaces.
$\operatorname{Pr}\left[\left(K_{1}, K_{2}\right)\right]=\operatorname{Pr}\left[K_{1}\right] \times \operatorname{Pr}\left[K_{2}\right]$.

Choose K_{1} and K_{2} independently, using the probability distributions defined on \mathcal{K}_{1} and \mathcal{K}_{2}.

Note that the product of a substitution cipher with another substitution cipher is another substitution cipher, so for practical purposes, we want to alternate.

Multiplicative Cipher 1/2

Let $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{26}$ and let $\mathcal{K}=\left\{a \in \mathbb{Z}_{26}: \operatorname{gcd}(a, 26)=1\right\}$.

For $a \in \mathcal{K}$, define $e_{a}(x)=a x \bmod 26$ and $d_{a}(y)=a^{-1} y \bmod 26$
$\left(x, y \in \mathbb{Z}_{26}\right)$.
Suppose \mathbf{M} is the Multiplicative Cipher and \mathbf{S} is the Shift Cipher, then $\mathbf{M} \times$ $\mathbf{S}=\mathbf{S} \times \mathbf{M}=$ Affine Cipher.

Proof:

$\mathbf{S}: e_{K}(x)=(x+K) \bmod 26, K \in \mathbb{Z}_{26}$.
$\mathbf{M}: e_{K}(x)=(a x) \bmod 26, a \in \mathbb{Z}_{26}$ and $\operatorname{gcd}(a, 26)=1$.
$\mathbf{M} \times \mathbf{S}: e_{(a, K)}(x)=(a x+K) \bmod 26$.

Multiplicative Cipher 2/2

The probability of a key in Affine Cipher is $\frac{1}{312}=\frac{1}{12} \times \frac{1}{26}$.
$\mathbf{S} \times \mathbf{M}: e_{(K, a)}(x)=a(x+K) \bmod 26=(a x+a K) \bmod 26$.
The key is $(a, a K)$ in $\mathbf{M} \times \mathbf{S} . a K=K_{1} \Rightarrow K=a^{-1} K_{1}$.
$\mathbf{M} \times \mathbf{S}=\mathbf{S} \times \mathbf{M} \rightarrow \mathbf{M}$ and \mathbf{S} are commute. But not all pairs of cryptosystems commute.

The product operation is always associative.

Product Cipher

$\underbrace{\mathbf{S} \times \mathbf{S} \times \cdots \times \mathbf{S}}_{\mathrm{n} \text { times }}=S^{n}$
 n times

If $\mathbf{S}^{2}=\mathbf{S}$, then \mathbf{S} is idempotent cryptosystem.

If a cryptosystem is not idempotent, then there is a potential increase in security by iterating it several times.

Taking the product of substitution- type ciphers with permutation- type ciphers is a commonly used technique.

Introduction to Block Cipher 1/2

Iterated cipher: The cipher requires the specification of a round function and a key schedule and the encryption of a plaintext will proceed through N_{r} similar rounds.
K : a random binary key.
N_{r} round keys (subkeys): $K^{1}, \cdots, K^{N_{r}}$.

Key schedule: the list of round keys \longrightarrow constructed from K using a fixed, public algorithm.
$\omega^{r}=g\left(\omega^{r-1}, K^{r}\right)$
ω^{r} : next state, ω^{r-1} : current state, K^{r} : round key, g : round function
ω^{0} : plaintext, $x, \omega^{N_{r}}$: ciphertext, y

Introduction to Block Cipher 2/2

In order for decryption to be possible, the function g must be injective (one-to- one) if its second argument is fixed.
$g^{-1}(g(\omega, a), a)=\omega$ for all ω and a.
$\omega^{r-1}=g^{-1}\left(\omega^{r}, K^{r}\right)$

Feistel Cipher

- named after the German-born physicist and cryptographer Horst Feistel who did pioneering research while working for IBM (USA)
- advantage: encryption and decryption operations are very similar, even identical in some cases
- requires only a reversal of the key schedule
- the size of the code or circuitry required to implement such a cipher is nearly halved.

Feistel Cipher - Construction details

Let F be the round function and let $K_{0}, K_{1}, \ldots, K_{n}$ be the sub-keys for the rounds respectively.

Encryption:

1. Split the plaintext block into two equal pieces, (L_{0}, R_{0})
2. For $i=0,1, \ldots, n$, compute $L_{i+1}=R_{i}, R_{i+1}=L_{i} \oplus F\left(R_{i}, K_{i}\right)$.
3. The ciphertext is $\left(R_{n+1}, L_{n+1}\right)$.

Decryption:

1. Split the ciphertext block into two equal pieces $\left(R_{n+1}, L_{n+1}\right)$
2. For $i=n, n-1, \ldots, 0$, compute $R_{i}=L_{i+1}, L_{i}=R_{i+1} \oplus F\left(L_{i+1}, K_{i}\right)$.
3. The plaintext is $\left(L_{0}, R_{0}\right)$.

One advantage of the Feistel model compared to a substitution-permutation network is that the round function does not have to be invertible.

Note the reversal of the subkey order for decryption; this is the only difference between encryption and decryption.

Data Encryption Standard

- Selected by the NBS as an official FIPS for the US in 1976.
- Was initially controversial because of classified design elements, a relatively short key length, and suspicions about a NSA backdoor.
- Insecure due to the 56-bit key size being too small
- In January, 1999, distributed.net and the Electronic Frontier Foundation collaborated to publicly break a DES key in 22 hours and 15 minutes.
- The algorithm is believed to be practically secure in the form of Triple DES,
 although there are theoretical attacks.

Triple Data Encryption Standard

uses a "key bundle" which comprises three DES keys, K_{1}, K_{2} and K_{3}, each of 56 bits.

The encryption algorithm is: ciphertext $=E_{K_{3}}\left(D_{K_{2}}\left(E_{K_{1}}(\right.\right.$ plaintext $\left.\left.)\right)\right)$
Decryption is the reverse: plaintext $=D_{K_{1}}\left(E_{K_{2}}\left(D_{K_{3}}(\right.\right.$ ciphertext $\left.\left.)\right)\right)$
Keying options

1. Keying option 1: All three keys are independent.
strongest, with $3 \times 56=168$ independent key bits.
2. Keying option 2: K_{1} and K_{2} are independent, and $K_{3}=K_{1}$. provides less security, with $2 \times 56=112$ key bits.
3. Keying option 3: All three keys are identical, i.e. $K_{1}=K_{2}=K_{3}$. equivalent to DES, with only 56 key bits

Substitution- Permutation Networks (SPNs)

ℓ and m are positive integers
$x=\left(x_{1} x_{2} \cdots x_{\ell m}\right)_{2}$ and $y=\left(y_{1} y_{2} \cdots y_{\ell m}\right)_{2}$
$\ell m:$ block length

S- box: $\pi_{S}:\{0,1\}^{\ell} \longrightarrow\{0,1\}^{\ell}$ is substitution. It is used to replace ℓ bits with a different set of ℓ bits.
$\pi_{P}:\{1, \ldots, \ell m\} \longrightarrow\{1, \ldots, \ell m\}$ is a permutation. It is used to permute ℓm bits.
$x=\left(x_{1} x_{2} \cdots x_{\ell m}\right)=x_{(1)}\|\cdots\| x_{(m)}$ for $1 \leq i \leq m$
$x_{(i)}=\left(x_{(i-1) \ell+1}, \ldots, x_{i \ell}\right)$.

The very first and last operations are XORs with subkeys: whitenning.

$$
\ell=m=N_{r}=4
$$

z	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
$\pi_{S}(z)$	E	4	D	1	2	F	B	8	3	A	6	C	5	9	0	7

z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\pi_{P}(z)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

Key schedule: $K=\left(k_{1}, \ldots, k_{32}\right) \in\{0,1\}^{32}$.
For $1 \leqslant r \leqslant 5, K^{r}=\left(k_{4 r-3}, \ldots, k_{4 r+12}\right)$.

Substitution- Permutation Networks (SPNs)

- The design is simple and very efficient, in both hardware and software.
- In software, S- box \longrightarrow look- up table. Memory $=\ell 2^{\ell}$.
- In hardware, needs smaller implementation.

In Example: Memory for S- box $=\ell 2^{\ell}=4 \times 2^{4}=2^{6}$.

If the S - box would be 16 bits to 16 bits, then Memory $=\ell 2^{\ell}=16 \times 2^{16}=2^{20}$.

A practical secure SPN would have

- a larger key size
- a larger block length
- larger S- Box

\Longrightarrow Advanced Encryption Standard (AES)

- more rounds

Many variations of SPNs are possible
use more than one S- box Data Encryption Standard (DES)
include an invertible linear Advanced Encryption Standard (AES)
transformation in each round

Linear Cryptanalysis

Take advantage of high probability occurrences of linear expressions involving

- plaintext bits
- ciphertext bits
- subkey bits
a known plaintext attack: that is, it is premised on the attacker having information on a set of plaintexts and the corresponding ciphertexts.

Linear Cryptanalysis

The basic idea is to approximate the operation of a portion of the cipher with an expression that is linear where the linearity refers to a mod-2 bit wise operation.

$$
\begin{equation*}
\operatorname{Pr}\left[X_{i_{1}} \oplus X_{i_{2}} \oplus \cdots \oplus X_{i_{u}} \oplus Y_{j_{1}} \oplus Y_{j_{2}} \oplus \cdots \oplus Y_{j_{v}}=0\right]=p_{L} \tag{1}
\end{equation*}
$$

The approach in linear cryptanalysis is to determine expressions of the form above which have a high or low probability of occurrence.

If a cipher displays a tendency for equation (1) to hold with high probability or not hold with high probability, this is evidence of the cipher's poor randomization abilities.

It is deviation or bias from the probability of $1 / 2$ is exploited.
linear probability bias: the amount by which the probability of a linear expression holding deviates from 1/2.

The Pilling- up Lemma

X_{1}, X_{2}, \ldots independent random variables and $X_{i}=0$ or 1.
$\operatorname{Pr}\left[X_{i}=0\right]=p_{i}$ and $\operatorname{Pr}\left[X_{i}=1\right]=1-p_{i}$.
$i \neq j \rightarrow$ The independence of X_{i} and X_{j} implies that
$\operatorname{Pr}\left[X_{i}=0, X_{j}=0\right]=p_{i} p_{j}$
$\operatorname{Pr}\left[X_{i}=0, X_{j}=1\right]=p_{i}\left(1-p_{j}\right)$
$\operatorname{Pr}\left[X_{i}=1, X_{j}=0\right]=\left(1-p_{i}\right) p_{j}$
$\operatorname{Pr}\left[X_{i}=1, X_{j}=1\right]=\left(1-p_{i}\right)\left(1-p_{j}\right)$.

The Pilling- up Lemma

$X_{i} \oplus X_{j}=0 \Rightarrow X_{i}=X_{j}:$ linear expression

$$
\operatorname{Pr}\left[X_{i} \oplus X_{j}=0\right]=p_{i} p_{j}+\left(1-p_{i}\right)\left(1-p_{j}\right)
$$

$X_{i} \oplus X_{j}=1 \Rightarrow X_{i} \neq X_{j}:$ affine expression

$$
\operatorname{Pr}\left[X_{i} \oplus X_{j}=1\right]=p_{i}\left(1-p_{j}\right)+\left(1-p_{i}\right) p_{j}
$$

The bias of $X_{i}: \epsilon_{i}=p_{i}-\frac{1}{2}$.

Observe the following facts:

$$
-\frac{1}{2} \leq \epsilon_{i} \leq \frac{1}{2}
$$

$$
\operatorname{Pr}\left[X_{i}=0\right]=\frac{1}{2}+\epsilon_{i}
$$

$$
\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2}-\epsilon_{i}
$$

The Pilling- up Lemma

Let $\epsilon_{1,2, \ldots, k}$ denote the bias of the random variable $X_{1} \oplus \cdots \oplus X_{k}$.
$\operatorname{Pr}\left[X_{i} \oplus X_{j}=0\right]=p_{i, j}=\frac{1}{2}+\epsilon_{i, j}=\left(\frac{1}{2}+\epsilon_{i}\right)\left(\frac{1}{2}+\epsilon_{j}\right)+\left(\frac{1}{2}-\epsilon_{i}\right)\left(\frac{1}{2}-\epsilon_{j}\right)=\frac{1}{2}+$ $2 \epsilon_{i} \epsilon_{j}$.

LEMMA 3.1 (Pilling- up lemma) Let $\epsilon_{1,2, \ldots, k}$ denote the bias of the random variable $X_{1} \oplus \cdots \oplus X_{k}$. Then

$$
\epsilon_{1,2, \ldots, k}=2^{k-1} \Pi_{j=1}^{k} \epsilon_{j}
$$

CORROLLARY 3.2 Let $\epsilon_{1,2, \ldots, k}$ denote the bias of $X_{1} \oplus \cdots \oplus X_{k}$. Suppose that $\epsilon_{j}=0$ for some j. Then $\epsilon_{1,2, \ldots, k}=0$.

Concatenation of Linear Expressions

Consider four independent random binary variables, X_{1}, X_{2}, X_{3} and X_{4}. Let $\operatorname{Pr}\left[X_{1} \oplus X_{2}=0\right]=1 / 2+\epsilon_{1,2}$ and $\operatorname{Pr}\left[X_{2} \oplus X_{3}=0\right]=1 / 2+\epsilon_{2,3}$.
$\operatorname{Pr}\left[X_{1} \oplus X_{3}=0\right]=\operatorname{Pr}\left[\left(X_{1} \oplus X_{2}\right) \oplus\left(X_{2} \oplus X_{3}\right)=0\right]$.

We are combining linear expressions to form a new linear expression.
$\operatorname{Pr}\left[X_{1} \oplus X_{3}=0\right]=1 / 2+2 \epsilon_{1,2} \epsilon_{2,3}$.
$\epsilon_{1,3}=2 \epsilon_{1,2} \epsilon_{2,3}$.

The expression $X_{1} \oplus X_{2}=0$ and $X_{2} \oplus X_{3}=0$ are analogous to linear approximation of S - boxes and $X_{1} \oplus X_{3}=0$ is analogous to a cipher approximation.

How do we construct expressions which are highly linear and hence can be exploited?

This is done by considering the properties of the cipher's only nonlinear component: S- box.

It is possible to concatenate linear approximations of the S- boxes together so that intermediate bits can be canceled out and we are left with a linear expression which has a large bias and involves only plaintext and the last round input bits.

Linear Approximations of S- boxes

Bias of Linear Expression $X_{2} \oplus X_{3} \oplus$ $Y_{1} \oplus Y_{3} \oplus Y_{4}=0$.
For exactly 12 out the 16 cases the expression above hold true.
The probability bias is 12/16$1 / 2=1 / 4$.

X_{1}	X_{2}	X_{3}	X_{4}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	X_{2} $\oplus X_{3}$	Y_{1} $\oplus Y_{3}$	X_{1} $\oplus X_{4}$	Y_{2}	X_{3} $\oplus X_{4}$	Y_{1} $\oplus Y_{4}$
0	0	0	0	1	1	1	0	0	0	0	1	0	1
0	0	0	1	0	1	0	0	0	0	1	1	1	0
0	0	1	0	1	1	0	1	1	0	0	1	1	0
0	0	1	1	0	0	0	1	1	1	1	0	0	1
0	1	0	0	0	0	1	0	1	1	0	0	0	0
0	1	0	1	1	1	1	1	1	1	1	1	1	0
0	1	1	0	1	0	1	1	0	1	0	0	1	0
0	1	1	1	1	0	0	0	0	1	1	0	0	1
1	0	0	0	0	0	1	1	0	0	1	0	0	1
1	0	0	1	1	0	1	0	0	0	0	0	1	1
1	0	1	0	0	1	1	0	1	1	1	1	1	0
1	0	1	1	1	1	0	0	1	1	0	1	0	1
1	1	0	0	0	1	0	1	1	1	1	1	0	1
1	1	0	1	1	0	0	1	1	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1	0	1	0
1	1	1	1	0	1	1	1	0	0	0	1	0	1

For equation $X_{1} \oplus X_{4}=Y_{2}$ the probability bias is 0 .

For equation $X_{3} \oplus X_{4}=Y_{1} \oplus Y_{4}$ the probability bias is $2 / 16-1 / 2=-3 / 8$.

Linear Approximation Table

Output Sum

	0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	-2	-2	0	0	-2	+6	+2	+2	0	0	+2	+2	0	0
I	2	0	0	-2	-2	0	0	-2	-2	0	0	+2	+2	0	0	-6	+2
n	3	0	0	0	0	0	0	0	0	+2	-6	-2	-2	+2	+2	-2	-2
p	4	0	+2	0	-2	-2	-4	-2	0	0	-2	0	+2	+2	-4	+2	0
u	5	0	-2	-2	0	-2	0	+4	+2	-2	0	-4	+2	0	-2	-2	0
t	6	0	+2	-2	+4	+2	0	0	+2	0	-2	+2	+4	-2	0	0	-2
	7	0	-2	0	+2	+2	-4	+2	0	-2	0	+2	0	+4	+2	0	+2
S	8	0	0	0	0	0	0	0	0	-2	+2	+2	-2	+2	-2	-2	-6
u	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	+2	0	+4	+2	-2
m	A	0	+4	-2	+2	-4	0	+2	-2	+2	+2	0	0	+2	+2	0	0
	B	0	+4	0	-4	+4	0	+4	0	0	0	0	0	0	0	0	0
	C	0	-2	+4	-2	-2	0	+2	0	+2	0	+2	+4	0	+2	0	-2
	D	0	+2	+2	0	-2	+4	0	+2	-4	-2	+2	0	+2	0	0	+2
	E	0	+2	+2	0	-2	-4	0	+2	-2	0	0	-2	-4	+2	-2	0
	F	0	-2	-4	-2	-2	0	+2	0	0	-2	+4	-2	-2	0	+2	0

Properties of the Table

- Each element in the table represents the number of matches between the linear equation represented in hexadecimal as "Input Sum" and the sum of the output bits represented in hexadecimal as "Output Sum" minus 8.

Example: Input Sum $=\mathrm{A}$ and Output $\mathrm{Sum}=6$ then expression that is considered is $X_{1} \oplus X_{3} \oplus Y_{2} \oplus Y_{3}=0$

- Hence, dividing an element value by 16 gives the probability bias for the particular linear combination of input and output bits.
- The linear combination involving no output bits (column 0) will always equal the linear combination of no input bits (row 0) resulting in a bias of $+1 / 2$ and a table value of +8 in the top left corner.
- The sum of any row or any column must be either +8 or - 8 .

Constructing Linear Approximations for the Complete Cipher

Once the linear approximation information has been compiled for the S- boxes in an SPN, we have the data to proceed with determining linear approximations of the overall cipher of the form of equation (1). This can be achieved by concatenating appropriate linear approximations of S- boxes.

By constructing a linear approximation involving plaintext bits and data bits from the output of the second last round of S - boxes, it is possible to attack the cipher by recovering a subset of the subkey bits that follow the last round.

- We would like to use as less as possible S-Boxes. The S-Boxes that are used are called active S-Boxes.
- The permutation layer distributes all the outputs of one S-Box to different S-Boxes at the next round. Hence, the best choice is to use just one output bit of an S-Box.
- We consider S_{12} for the first round.
- Only Y_{1}, Y_{2}, Y_{3} or Y_{4} should be involved in the expression that is used for S_{12}.
- The choices are as follows

	1	2	4	8
F	-2	-4	-2	0

- $U_{i}\left(V_{i}\right)$ represent the 16 - bit block of bits at
 the input (output) of the round i S- boxes.
- $U_{i, j}\left(V_{i, j}\right)$ represent the j - th bit of block U_{i} $\left(V_{i}\right)$.
- K_{i} represents the subkey block of bits XORed at the input to round i.

$$
\begin{aligned}
& S_{12}: X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{4}=Y_{3} \\
& V_{1,7}=U_{1,5} \oplus U_{1,6} \oplus U_{1,7} \oplus U_{1,8}
\end{aligned}
$$

$$
=P_{5} \oplus K_{1,5} \oplus P_{6} \oplus K_{1,6} \oplus P_{7} \oplus K_{1,7} \oplus P_{8} \oplus K_{1,8}
$$

with bias $-\frac{1}{4}$.
The choices for S_{23} are as follows:

		5	D	
round 3	4	-4	-4	

$S_{23}: X_{2}=Y_{2} \oplus Y_{4}$

$$
\begin{aligned}
V_{2,10} \oplus V_{2,12} & =U_{2,10} \\
& =V_{1,7} \oplus K_{2,10} \\
& =P_{5} \oplus K_{1,5} \oplus P_{6} \oplus K_{1,6} \oplus P_{7} \oplus K_{1,7} \\
& \oplus P_{8} \oplus K_{1,8} \oplus K_{2,10}
\end{aligned}
$$

with bias $-\frac{1}{4}$.

The choices for S_{32} and S_{34} are as follows:

	2	3	6	A
2	-2	-2	-2	+2

$S_{32}: X_{3}=Y_{3}$

$$
\begin{aligned}
V_{3,7} & =U_{3,7} \\
& =V_{2,10} \oplus K_{3,7}
\end{aligned}
$$

with bias $-\frac{1}{8}$.
$S_{34}: X_{3}=Y_{3}$

$$
\begin{aligned}
V_{3,15} & =U_{3,15} \\
& =V_{2,12} \oplus K_{3,15}
\end{aligned}
$$

with bias $-\frac{1}{8}$.
$U_{4,10} \oplus K_{4,10} \oplus U_{4,12} \oplus K_{4,12}=V_{2,10} \oplus V_{2,12} \oplus$ $K_{3,7} \oplus K_{3,15}$
$P_{5} \oplus P_{6} \oplus P_{7} \oplus P_{8} \oplus U_{4,10} \oplus U_{4,12} \oplus K_{1,5} \oplus K_{1,6} \oplus$ $K_{1,7} \oplus K_{1,8} \oplus K_{2,10} \oplus K_{3,7} \oplus K_{3,15} \oplus K_{4,10} \oplus$ $K_{4,12}=0$
by application of the Piling- Up Lemma bias is $2^{3} \times-\frac{1}{4} \times-\frac{1}{4} \times-\frac{1}{8} \times-\frac{1}{8}=\frac{1}{128}$.

$$
P_{5} \oplus P_{6} \oplus P_{7} \oplus P_{8} \oplus U_{4,10} \oplus U_{4,12} \oplus \sum K=0
$$

$$
\text { where } \sum K=K_{1,5} \oplus K_{1,6} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,10} \oplus K_{3,7} \oplus K_{3,12} \oplus K_{4,10} \oplus K_{4,12}
$$

and $\sum K$ is fixed at either 0 or 1 depending on the key of the cipher. Now since $\sum K$ is fixed, we note that
$P_{5} \oplus P_{6} \oplus P_{7} \oplus P_{8} \oplus U_{4,10} \oplus U_{4,12}=0$
must hold with a probability of either $p_{L}=\frac{1}{2}-\frac{1}{128}=\frac{63}{128}$ or $1-\frac{63}{128}=\frac{65}{128}$, depending on whether $\sum K=0$ or 1 , respectively. In other words, we now have a linear approximation of the first three rounds of the cipher with a bias of magnitude $\frac{1}{128}$. We must now discuss how such a bias can be used to determine some of the key bits.

Meaning of the p_{L}

- Linear expression implicitly has subkey bits involved. If the sum of the involved subkey bits is " 0 ", the bias will have the same sign as the bias of the expression involving the subkey sum and if the sum of the involved subkey bits is " 1 ", the bias will have the opposite sign as the bias of the expression involving the subkey sum
- $p_{L}=1$ implies that linear expression is a perfect representation of the cipher behavior and the cipher has a catastrophic weakness.
- $p_{L}=0$, then linear expression represents an affine relationship.

Steps of the Linear Cryptanalysis 1/2

1. Suppose that it is possible to find a probabilistic linear relationship between a subset of plaintext bits and a subset of state bits immediately preceding the substitutions performed in the last round.
2. Assume that an attacker has a large number of plaintext- ciphertext pairs, all of which are encrypted using the same unknown key K.
3. Decrypt all the ciphertexts, using all possible candidate keys for the last round of the cipher.
4. For each candidate key, we compute the values of the relevant state bits involved in the linear relationship.
5. Determine if the above mentioned linear relationship holds.

Steps of the Linear Cryptanalysis 2/2

6. Whenever it does, we increment a counter corresponding to the particular candidate key.
7. The candidate key that has a frequency count that is furthest from $1 / 2$ times the number of pairs contains the correct values for these key bits.

This works because it is assumed that the correct partial subkey value will result in the linear approximation holding with a probability significantly different from $1 / 2$.

An incorrect subkey is assumed to result in a relatively random guess at the bits entering the S - boxes of the last round and as a result, the linear expression will hold with a probability close to $1 / 2$.

The linear expression affects the inputs to S-box S_{43} in the last round.

For each plaintext/ciphertext sample, we would try all 16 values for the target partial subkey $K_{5,9}, K_{5,10}, K_{5,11}, K_{5,12}$.

We determine the value of $U_{4,10}, U_{4,12}$ by running the data backwards through the target partial subkey and S-box S_{43} for each ciphertext.

We determine if the linear expression $P_{5} \oplus P_{6} \oplus P_{7} \oplus P_{8} \oplus U_{4,10} \oplus U_{4,12}=0$ holds or not and produce the following table.

	Candidate Key Value															
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
P_{1}, C_{1}	+	+	-	+	-	+	-	-	-	+	-	+	+	-	-	+
P_{2}, C_{2}	-	+	+	+	-	-	+	-	-	-	-	-	+	+	-	+
P_{n}, C_{n}	$+$	-	-	$+$	$+$	-	-	+		-	+	-	$+$		-	+

The count which deviates the largest from half of the number of plaintext/ciphertex samples is assumed to be the correct value.

Complexity of Attack

The larger the magnitude of the bias in the S - boxes, the larger the magnitude of the bias of the overall expression.

The fewer active S- boxes, the larger the magnitude of the overall linear expression bias.

Let ϵ represent the bias from $1 / 2$ of the probability that the linear expression for the complete cipher holds. The number of known plaintexts required in the attack is proportional to ϵ^{-2} and, letting N_{L} represent the number of known plaintexts required, it is reasonable to approximate N_{L} by $N_{L} \approx 1 / \epsilon^{-2}$.

In practice, it is generally reasonable to expect some small multiple of ϵ^{-2} known plaintexts are required.

Differential Cryptanalysis

Differential cryptanalysis exploits the high probability of certain occurrences of plaintext differences and differences into the last round of the cipher.

A system with input $X=\left[X_{1} X_{2} \ldots X_{n}\right]$ and output $Y=\left[Y_{1} Y_{2} \ldots Y_{n}\right]$. Let two inputs to the system be X^{\prime} and $X^{\prime \prime}$ with the corresponding outputs Y^{\prime} and $Y^{\prime \prime}$, respectively.

The input difference is given by $\Delta X=X^{\prime} \oplus X^{\prime \prime}$ where \oplus represents a bit-wise exclusive-OR of the n-bit vectors and, hence,
$\Delta X=\left[\Delta X_{1} \Delta X_{2} \ldots \Delta X_{n}\right]$ where $\Delta X_{i}=X_{i}^{\prime} \oplus X_{i}^{\prime \prime}$.

Similarly, $\Delta Y=Y^{\prime} \oplus Y^{\prime \prime}$ is the output difference and
$\Delta Y=\left[\Delta Y_{1} \Delta Y_{2} \ldots \Delta Y_{n}\right]$

Differential

In an ideally randomizing cipher, the probability that a particular output difference ΔY occurs given a particular input difference ΔX is $\frac{1}{2}^{n}$ where n is the number of bits of X.

Differential cryptanalysis seeks to exploit a scenario where a particular ΔY occurs given a particular input difference ΔX with a very high probability p_{D} (i.e., much greater than $\frac{1}{2}^{n}$). The pair $(\Delta X, \Delta Y)$ is referred to as a differential.

Differential cryptanalysis is a chosen plaintext attack.

The attacker will select pairs of inputs, X^{\prime} and $X^{\prime \prime}$, to satisfy a particular ΔX, knowing that for that ΔX value, a particular ΔY value occurs with high probability.

Investigate the construction of a differential $(\Delta X, \Delta Y)$.

Differential Characteristic

Examine high likely differential characteristics where a differential characteristic is a sequence of input and output differences to the rounds so that the output difference from one round corresponds to the input difference for the next round.

Using the highly likely differential characteristic gives us the opportunity to exploit information coming into the last round of the cipher to derive bits from the last layer of subkeys.

Example 1 for Differentials

$$
X, Y \in 0,1, \ldots, 4
$$

$$
Y=f(X)=3 X+2 \bmod 5, \Delta X=X^{\prime}-X^{\prime \prime} \bmod 5
$$

		ΔY					
X^{\prime}	Y^{\prime}	$\Delta X=0$	$\Delta X=1$	$\Delta X=2$	$\Delta X=3$	$\Delta X=4$	
0	2	0	3	1	4	2	
1	0	0	3	1	4	2	
2	3	0	3	1	4	2	
3	1	0	3	1	4	2	
4	4	0	3	1	4	2	

		ΔY				
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{0}$	5	0	0	0	0
	$\mathbf{1}$	0	0	0	5	0
ΔX	$\mathbf{2}$	0	5	0	0	0
	$\mathbf{3}$	0	0	0	0	5
	$\mathbf{4}$	0	0	5	0	0

$$
\begin{aligned}
& \operatorname{Pr}(\Delta Y=1 \mid \Delta X=2)=1 \\
& \operatorname{Pr}(\Delta Y=2 \mid \Delta X=2)=0
\end{aligned}
$$

Example 2 for Differentials

$$
X, Y \in 0,1, \ldots, 4
$$

$$
Y=f(X)=X^{2} \bmod 5, \Delta X=X^{\prime}-X^{\prime \prime} \bmod 5
$$

		ΔY					
X^{\prime}	Y^{\prime}	$\Delta X=0$	$\Delta X=1$	$\Delta X=2$	$\Delta X=3$	$\Delta X=4$	
0	0	0	4	1	1	4	
1	1	0	1	0	2	2	
2	4	0	3	4	3	0	
3	4	0	0	3	4	3	
4	1	0	2	2	0	1	

		ΔY				
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{0}$	5	0	0	0	0
	$\mathbf{1}$	1	1	1	1	1
ΔX	$\mathbf{2}$	1	1	1	1	1
	$\mathbf{3}$	1	1	1	1	1
	$\mathbf{4}$	1	1	1	1	1

$$
\begin{aligned}
& \operatorname{Pr}(\Delta Y=1 \mid \Delta X=2)=\frac{1}{5} \\
& \operatorname{Pr}(\Delta Y=2 \mid \Delta X=2)=\frac{1}{5}
\end{aligned}
$$

Differential of S-Box

Examine the properties of individual S-boxes and use these properties to determine the complete differential characteristic.

Consider the input and output differences of the S-boxes in order to determine a high probability difference pair.

Combining S-box difference pairs from round to round so that the nonzero output difference bits from one round correspond to the non-zero input difference bits of the next round, enables us to find a high probability differential consisting of the plaintext difference and the difference of the input to the last round.

z	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
$\pi_{S}(z)$	E	4	D	1	2	F	B	8	3	A	6	C	5	9	0	7

$\operatorname{Pr}(\Delta Y \mid \Delta X)$ can be derived by considering input pairs ($X^{\prime}, X^{\prime \prime}$) such that $X^{\prime} \oplus$ $X^{\prime \prime}=\Delta X$.

X	Y	ΔY		
		$\Delta X=1011$	$\Delta X=1000$	$\Delta X=0100$
0000	1110	0010	1101	1100
0001	0100	0010	1110	1011
0010	1101	0111	0101	0110
0011	0001	0010	1011	1001
0100	0010	0101	0111	1100
0101	1111	1111	0110	1011
0110	1011	0010	1011	0110
0111	1000	1101	1111	1001
1000	0011	0010	1101	0110
1001	1010	0111	1110	0011
1010	0110	0010	0101	0110
1011	1100	0010	1011	1011
1100	0101	1101	0111	0110
1101	1001	0010	0110	0011
1110	0000	1111	1011	0110
1111	0111	0101	1111	1011

Output Difference

S-box difference distribution table

Modes of operation

For messages exceeding block length, n, the message is partitioned into n-bit blocks.
E_{K} : the encryption function
E_{K}^{-1} : the decryption function
$x=x_{1}, \ldots, x_{t}:$ A plaintext message

Electronic Codebook (ECB) mode encryption

1. Identical
plaintext blocks result in identical ciphertext.
2. Reordering ciphertext blocks results in correspondingly re-ordered plaintext blocks.
3. One or more bit errors in a single ciphertext block affect decipherment of that block only.

Electronic Codebook (ECB) mode decryption

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

1. Identical ciphertext blocks do not result.
2. Ciphertext c_{j} depends on x_{j} and all preceding plaintext blocks.
3. A single bit error in ciphertext block c_{j} affects decipherment of blocks c_{j} and c_{j+1}.
4. The CBC mode is selfsynchronizing or ciphertext autokey.
5. Identical ciphertext blocks do not result.
6. Ciphertext block c_{j} depends on both x_{j} and preceding plaintext blocks.
7. One or more bit errors in any single r-bit ciphertext block c_{j} affects the decipherment of that and the next $\left\lceil\frac{n}{r}\right\rceil$ ciphertext blocks.
8. The CFB mode is self-synchronizing, but requires $\left\lceil\frac{n}{r}\right\rceil$ ciphertext blocks to recover.
9. Throughput: for $r<n$, throughput is decreased by a factor of $\frac{n}{r}$.
10. Identical ciphertext blocks do not result.
11. The keystream is plaintext-independent.
12. One or more bit errors in any ciphertext character c_{j} affects the decipherment of only that character.
13. The OFB mode recovers from ciphertext bit errors.
14. Throughput: for $r<n$, throughput is decreased. Since the keystream is independent of plaintext or ciphertext, it may be pre-computed.

Data Integrity and Source Authentication

- Encryption does not protect data from modification by another party.
- Need a way to ensure that data arrives at destination in its original form as sent by the sender and it is coming from an authenticated source.

Hash Functions

A cryptographic hash function is a deterministic procedure that takes an arbitrary block of data and returns a fixed-size bit string, the hash value, such that an accidental or intentional change to the data will change the hash value.

The data to be encoded is often called the message and the hash value is sometimes called the message digest or simply digest.

Properties of Ideal Cryptographic Hash Functions

It is

1. easy to compute the hash value for any given message,
2. infeasible to find a message that has a given hash,
3. infeasible to modify a message without hash being changed,
4. infeasible to find two different messages with the same hash.

Even if the data is stored in an insecure place, its integrity can be checked from time to time by recomputing the digest and verifying that the digest has not changed.

Definition of Hash Family

A hash family is a four tuple $\mathcal{X}, y, \mathcal{K}, \mathcal{H}$, where teh following conditions are satisfied:

1. X is a set of possible messages
2. y is a finite set of possible message digests
3. \mathcal{K} is a finite set of possible keys
4. For each $K \in \mathcal{K}$, there is a hash function $h_{K} \in \mathcal{H}$. Each $h_{K}: \mathcal{X} \rightarrow y$.

A pair $(x, y) \in X \times y$ is said to be valid under the key K if $h_{K}(x)=y$.
Let $\mathcal{F}^{X, Y}$ denote the set of all functions from X to y. Suppose that $|X|=N$ and $|y|=M$. Then $\left|\mathcal{F}^{X}, Y\right|=M^{N}$. Any hash family $\mathcal{F} \subseteq \mathcal{F}^{X}, Y$ is termed an (N, M)-hash family.

MDC (Modification Dedection Code): An unkeyed hash function is a function $h_{K}: \mathcal{X} \rightarrow y$, where $|\mathcal{K}|=1$.

Security of Cryptographic Hash Functions

A cryptographic hash function must be able to withstand all known types of cryptanalytic attacks. As a minimum, it must have the following properties:

1. Preimage resistance: Given a hash y it should be difficult to find any message x such that $y=h(x)$. This concept is related to that of one-way function.
2. Second preimage resistance: Given an input x_{1} it should be difficult to find another input x_{2} where $x_{1} \neq x_{2}$ such that $h\left(x_{1}\right)=h\left(x_{2}\right)$. This property is sometimes referred to as weak collision resistance.
3. Collision resistance: It should be difficult to find two different messages x_{1} and x_{2} such that $h\left(x_{1}\right)=h\left(x_{2}\right)$. Such a pair is called a cryptographic hash collision. This property is sometimes referred to as strong collision resistance. It requires a hash value at least twice as long as that required for preimage-resistance, otherwise collisions may be found by a birthday attack.

Uses of hash functions

- Message authentication
- Software integrity
- One-time Passwords
- Digital signature
- Timestamping
- Certificate revocation management

Constructing Hash Function From Compression Functions

A compression function takes a fixed-length input string and output a shorter string $f:\{0,1\}^{m+t} \rightarrow\{0,1\}^{m}$.

The Merkle-Damgard Construction of Hash Functions

- Goal: construct a hash function $h:\{0,1\}^{\star} \rightarrow\{0,1\}^{m}$ from a compression function $f:\{0,1\}^{m+t+1} \rightarrow\{0,1\}^{m}$
- Given message x of arbitrary length

Example:

- Compression function: $f:\{0,1\}^{128+512+1} \rightarrow\{0,1\}^{128}$
- Message x has 1000 bits:
$-y_{1}$ is first 512 bits of x
$-y_{2}$ is last 488 bits of $x \| 0^{24}$
- y_{3} is $0^{480}| | 32$-bit binary representation of 24
- Iteration results
$-z_{1}=f\left(0^{129} \| y_{1}\right) z_{1}$ has 128 bits
$-z_{2}=f\left(z_{1}\|1\| y_{2}\right)$
$-z_{3}=f\left(z_{2}\|1\| y_{3}\right) z_{3}$ is the message digest $h(x)$

Example:

- Suppose that message x^{\prime} has 488 bits and $h(x)=h\left(x^{\prime}\right)$ (there is a collision for h):
- y_{1}^{\prime} is $x^{\prime} \| 0^{24}$
- y_{2}^{\prime} is $0^{480} \|$ 32-bit binary representation of 24
$-z_{1}^{\prime}=f\left(0^{129} \| y_{1}^{\prime}\right) z_{1}^{\prime}$ has 128 bits
$-z_{2}^{\prime}=f\left(z_{1}^{\prime}\|1\| y_{2}^{\prime}\right) z_{2}^{\prime}$ is $h\left(x^{\prime}\right)$
- Then $f\left(z_{1}^{\prime}\|1\| y_{2}^{\prime}\right)=f\left(z_{2}\|1\| y_{3}\right)$ and $y_{3}=y_{2}^{\prime}$
- if $z_{1}^{\prime} \neq z_{2}$ then a collision is found for f
- if $z_{1}^{\prime}=z_{2}$ then $f\left(0^{129} \| y_{1}^{\prime}\right)=f\left(z_{1}\|1\| y_{2}\right)$, there is also a collision for f

Security of the Merkle- Damgard Construction

If $f:\{0,1\}^{m+t+1} \rightarrow\{0,1\}^{m}$ is collision resistant, then the Merkle-Damgard construction $h:\{0,1\}^{\star} \rightarrow\{0,1\}^{m}$ is collision resistant.

SHA1 (Secure Hash Algorithm)

- SHA was designed by NIST and is the US federal standard for hash functions, specified in FIPS-180 (1993).
- SHA-1, revised version of SHA, specified in FIPS-180-1 (1995) use with Secure Hash Algorithm).
- It produces 160-bit hash values.
- NIST have issued a revision FIPS 180-2 that adds 3 additional hash algorithms: SHA-256, SHA-384, SHA-512, designed for compatibility with increased security provided by AES.

SHA3 Contest

NIST announced a public competition on Nov. 2, 2007 to develop a new cryptographic hash algorithm. The winning algorithm will be named "SHA3", and will augment the hash algorithms currently specified in the Federal Information Processing Standard (FIPS) 180-3, Secure Hash Standard.

NIST received 64 entries by October 31, 2008; and selected 51 candidate algorithms to advance to the first round on December 10, 2008, and 14 to advance to the second round on July 24, 2009.

Based on the public feedback and internal reviews of the second-round candidates, NIST selected 5 SHA-3 finalists - BLAKE, GrøstI, JH, Keccak, and Skein to advance to the third (and final) round of the competition on December 9, 2010, which ended the second round of the competition.

A one-year public comment period is planned for the finalists. NIST also plans to host a final SHA-3 Candidate Conference in the spring of 2012 to discuss the public feedback on these candidates, and select the SHA-3 winner later in 2012.

Further details of the competition are available at http://ehash.iaik.tugraz. at/wiki/The_SHA-3_Zoo.

Message Authentication Codes

MAC (Message Authentication Code): Hash function with secret key

- hard to produce a forgery
- can only be generated and verified by someone who secret MAC-key
- do not use the same key for MAC and for encryption

MAC $=$ hash function with secret key

MAC based on block cipher: retail MAC

$\mathrm{MAC}_{K}(x)$

Symmetric Key Cryptography

Secret Key \leftrightarrow Public Key

- key agreement

How can 2 people who have never met share a key which is only known to these 2 people

- digital signature

How can one be sure that a message comes from the sender who claims to have produced that message?

Public Key Cryptosystem

W. Diffie, M. Hellman, "New directions in cryptography", IEEE Transactions on Information Theory, Nov 1976, Volume: 22, Issue:6, page(s): 644-654.

1. for every $K \in \mathcal{K} e_{K}$ is the inverse of d_{K},
2. for every $K \in \mathcal{K}, x \in \mathcal{P}$ and $y \in \mathcal{C} e_{K}(x)=y$ and $d_{K}(y)=x$ are easy to compute.
3. for almost every $K \in \mathcal{K}$, each easily computed algorithm equivalent to d_{K} is computationally infeasible to derive from e_{K},
4. for every $K \in \mathcal{K}$, it is feasible to compute inverse pairs e_{K} and d_{K} from K.

Because of the third property, a user's enciphering function e_{K} can be made public without compromising the security of his secret deciphering function d_{K}. The cryptographic system is therefore split into two parts, a family of enciphering transformations and a family of deciphering transformations in such a way that, given a member of one family, it is infeasible to find the corresponding member of the other.

Problem 1: Key-Agreement (1/3)

Diffie-Hellman Key Agreement Protocol

($f(X, Z)$: commutative one way function)

$$
\begin{aligned}
& \text { Alice } \\
& Y_{A}=f\left(X_{A}, Z\right) \\
& \\
& K_{A B}=f\left(X_{A}, Y_{B}\right)=f\left(X_{A}, f\left(X_{B}, Z\right)\right) \stackrel{Y_{A}}{\longrightarrow} \\
& \\
& Y_{B}=f\left(X_{B}, Z\right) \\
& Y_{B A}=f\left(X_{B}, f\left(X_{A}, Z\right)\right)
\end{aligned}
$$

Key-Agreement (2/3)

Modular Exponentiation

- given α and a prime p with $\alpha \in[1, p-1]$
- $w=\alpha^{x} \bmod p$ can be computed efficiently (square and multiply)

Inverse operation (discrete logarithm)

- given α, p and w, find x such that

$$
\alpha^{x} \bmod p \equiv w
$$

Key-Agreement (3/3)

- $p=37$: the integers from 0 to 36 form a field with + and $\times \bmod 37$
- $\alpha=2$ is a generator of the non-zero elements: powers of 2 generate all non-zero elements: $2^{0}=1,2^{1}=2,2^{3}=8,2^{4}=16,2^{5}=32,2^{6}=27$, $2^{7}=17, \ldots, 2^{36}=1$
- $X_{A}=10 \Rightarrow Y_{A}=2^{10} \bmod 37=25$
- $X_{B}=13 \Rightarrow Y_{B}=2^{13} \bmod 37=15$
- $K_{A B}=\left(Y_{B}\right)^{X_{A}}=15^{10} \bmod 37=15^{8+2} \bmod 37=7 \times 3 \bmod 37=21$
- $K_{B A}=\left(Y_{A}\right)^{X_{B}}=25^{13} \bmod 37=25^{8+4+1} \bmod 37=34 \times 16 \times 25 \bmod 37=$ 21
- $K_{A B}=K_{B A}=21$

Problem 2: Public-key cryptography (1/3)

(trapdoor one-way functions)

Bob
Eve
Alice

Public-key cryptography (2/3)

RSA public-key algorithm

trapdoor one-way function:

- given x : "easy" to compute $f(x)$
- given $f(x)$: "hard" to compute x
- given $f(x)$ and the trapdoor information: finding x is "easy"
given two large primes p and q and a public key (e, n)
$n=p \times q$ (factoring n is hard)
$f(x)=x^{e} \bmod n$ is a trapdoor one-way function
trapdoor information (p, q) allows to find a private key (d, n) such that $\left(x^{e}\right)^{d}=\left(x^{e}\right)^{1 / e}=x \bmod n$

RSA public-key algorithm (2): detail
key generation:
choose two primes p and q
$n=p \times q, \phi(n)=(p-1)(q-1)$
choose e prime w.r.t. $\phi(n)$
compute $d=e^{-1} \bmod \phi(n)$
public key $=(e, n)$
private key $=(d, n)$ or (p, q)
encrytion: $c=m^{e} \bmod n$
decrytion: $m=c^{d} \bmod n$

Modular Exponentiation

Attacks on the RSA Cryptosystem

Although 35 years of research have led to a number of fascinating attacks, none of them is devastating. They mostly illustrate the dangers of improper use of RSA. Indeed, securely implementing RSA is a nontrivial task.

Factoring Large Integers

We refer to factoring the modulus as a brute-force attack on RSA.

Factoring algorithms running time

Pollard's Rho algorithm	$O(\sqrt{p})$
Pollard's $p-1$ algorithm	$O\left(p^{\prime}\right)$ where p^{\prime} is the largest
	prime factor of $p-1$
Pollard's $p+1$ algorithm	$O\left(p^{\prime}\right)$ where p^{\prime} is the largest prime factor of $p+1$
Elliptic Curve method (ECM)	$O\left(e^{\left.(1+o(1))(2 \ln p \ln \ln p)^{1 / 2}\right)}\right.$
Quadratic Sieve (Q.S.)	$O\left(e^{\left.(1+o(1))(\ln N \ln \ln N)^{1 / 2}\right)}\right.$
Number Filed Sieve (NFS)	$O\left(e^{(1.92+o(1))(\ln N)^{1 / 3}(\ln \ln N)^{2 / 3}}\right)$

Our objective is to survey attacks on RSA that decrypt messages without directly factoring the RSA modulus N.

Is breaking RSA as hard as factoring?

Chinese Remainder Theorem

The following problem was posed by Sunzi (4th century AD) in the book Sunzi Suanjing:
when a number is
repeatedly divided by 3 , the remainder is 2 ;
by 5 the remainder is 3 ; and by 7 the remainder is 2 .

What will be the number?

Oystein Ore mentions another puzzle with a dramatic element from Brahma-Sphuta-Siddhanta (Brahma's Correct System) by Brahmagupta (born 598 AD):

An old woman goes to market and a horse steps on her basket and crashes the eggs.

The rider offers to pay for the damages and asks her how many eggs she had brought.

She does not remember the exact number, but when she had taken them out two at a time, there was one egg left. The same happened when she picked them out three, four, five, and six at a time, but when she took them seven at a time they came out even. What is the smallest number of eggs she could have had?

Involves a situation like the following: we are asked to find an integer x which gives a remainder of 4 when divided by 5 , a remainder of 7 when divided by 8 , and a remainder of 3 when divided by 9 .

In other words, we want x to satisfy the following congruences.
$x \equiv 4 \bmod 5, x \equiv 7 \bmod 8, x \equiv 3 \bmod 9$

There can be any number of moduluses, but no two of them should have any factor in common. Otherwise the existence of a solution cannot be guaranteed.

The method for solving this set of three simultaneous congruences is to reduce it to three separate problems whose answers may be added together to get a solution to the original problem.

To understand this, think about why
$144+135+120$ will be a solution to the simultaneous congruences.

144 gives a reminder of 4 when divided by 5 . On the other hand, 135 and 120 are multiples of 5 , so adding them doesn't change this reminder.
$144+135+120 \equiv 144 \bmod 5 \equiv 4 \bmod 5$

135 gives a reminder of 7 when divided by 8 . On the other hand, 144 and 120 are multiples of 8 , so adding them on doesn't change this reminder.
$144+135+120 \equiv 135 \bmod 8 \equiv 7 \bmod 8$

120 gives a reminder of 3 when divided by 9 . But 144 and 135 are multiples of 9 , so adding them in doesn't affect this remainder.
$144+135+120 \equiv 120 \bmod 9 \equiv 3 \bmod 9$

Therefore 399 , which is the sum of 144,135 , and 120 , satisfies all three of the congruences.

Having now seen why 399 is a valid solution, we can also partly see the process by which it was created. We found it as the sum of three numbers.

The first number, 144, gives the right remainder when divided by 5 and is also a multiple of 8 and of 9 .

The second number, 135, is a multiple of 5 and of 9 and gives the correct remainder when divided by 8.

The third number, 120, is congruent to 3 module 9 and is a multiple of both 5 and 8.

So where did we get these three numbers?

To start with, taking the last two of the three moduli 5,8 , and 9 , compute $8 \times 9=72$. We look for a multiple of 72 which satisfies the first congruence.
$72 \times 2=144$, and $144 \equiv 4 \bmod 5$.
$5 \times 9=45$. We look for a multiple of 45 which satisfies the second congruence. We find (by trial and error) that
$1 \times 45=45 \equiv 5 \bmod 8,2 \times 45=90 \equiv 2 \bmod 8,3 \times 45=135 \equiv 7 \bmod 8$
$5 \times 8=40$. We look for a multiple of 40 which is congruent to 3 module 9 .
$40 \equiv 4 \bmod 9,80 \equiv 8 \bmod 8,120 \equiv 3 \bmod 9$

Now the required answer is the sum $144+135+120$, namely 399 .

Consider another example. Look for a number x satisfying the following congruences.
$x \equiv 1 \bmod 2, x \equiv 2 \bmod 3, x \equiv 3 \bmod 5, x \equiv 1 \bmod 7$
$3 \times 5 \times 7=105$. We look for a multiple of 105 which is congruent to 1 modulo
2. We can choose 105 itself, since it is odd.
$2 \times 5 \times 7=70$. We look for a multiple of 70 which is congruent to 2 modulo 3. $70 \equiv 1 \bmod 3 \Rightarrow 2 \times 70 \equiv 2 \times 1 \equiv 2 \bmod 3$. We can choose 140 .
$2 \times 3 \times 7=42$. We look for a multiple of 42 which is congruent to 3 modulo 5 . $42 \equiv 2 \bmod 5.4 \times 42 \equiv 4 \times 2=8 \equiv 3 \bmod 5$. We use 168 .
$2 \times 3 \times 5=30$. We want a multiple of 30 which is congruent to 1 modulo 7 . $30 \equiv 2 \bmod 7.4 \times 30 \equiv 4 \times 2=8 \equiv 1 \bmod 7$. We use 120 .

Adding the four numbers we've found together, we get a solution of $105+$ $140+168+120=533$

One solution to a system of congruences

$$
\begin{aligned}
& x \equiv a_{1} \bmod m_{1} \\
& x \equiv a_{2} \bmod m_{2} \\
& \ldots \\
& x \equiv a_{n} \bmod m_{n}
\end{aligned}
$$

with the m_{i} mutually prime to each other can be found by adding together n numbers. The i th of these numbers should be congruent to a_{i} modulo m_{i} and it should be a multiple of all the other moduli m_{k}.

If a and m are relatively prime, then the congruence $a z \equiv b \bmod m$ is always solvable for z, no matter what b is.

To see why this has to be true, consider, for instance, the first 5 multiples of 42 and reduce modulo 5.

$$
\begin{aligned}
42 & \equiv 2 \bmod 5 \\
0 \times 42 & \equiv 0 \bmod 5 \\
1 & \equiv 2 \bmod 5 \\
2 \times 42 & \equiv 4 \bmod 5 \\
3 \times 42 & \equiv 1 \bmod 5 \\
4 \times 42 & \equiv 3 \bmod 5
\end{aligned}
$$

Notice that one the right hand side, every number from 0 to 4 occurs, showing that a congruence $42 z \equiv b$ mod 5 can always be solved, no matter what b is.

This is not a coincidence, but is a consequence of the fact that 42 has no factor in common with 5. If any of the five numbers from 0 to 4 had been missing on the right-hand side of the five congruences listed, then at least one right-hand side would have to be repeated. But, given the fact that 42 has no factors in common with 5 , this would not be possible.

Broadcast Attack

Think that Alice wants to send the same message, x to Bob, Bill and Bart, who have all the same public key, e, but different modulus, n_{1}, n_{2}, n_{3}. Can Eve find x without knowing the private keys?

Yes, she can by using CRT!

$$
\begin{aligned}
& x^{e} \equiv a_{1} \bmod n_{1} \\
& x^{e} \equiv a_{2} \bmod n_{2} \\
& x^{e} \equiv a_{3} \bmod n_{3}
\end{aligned}
$$

Common Modulus

To avoid generating a different modulus $N=p q$ for each user, one may wish to fix N once and for all. The same N is used by all users. A trusted central authority could provide user i with a unique pair $\left(e_{i}, d_{i}\right)$ from which user i forms a public key $<N, e_{i}>$ and a secret key $<N, d_{i}>$.

Fact 1: Let $\langle N, e\rangle$ be an RSA public key. Given the private key d, one can efficiently factor the modulus $N=p q$. Conversely, given the factorization of N, one can efficiently recover d.

By Fact 1 Bob can use his own exponents e_{b}, d_{b} to factor the modulus N. Once N is factored Bob can recover Alice's private key d_{a} from her public key e_{a}. This observation, due to Simmons, shows that an RSA modulus should never be used by more than one entity.

Exposing the private key d and factoring N are equivalent. Hence there is no point in hiding the factorization of N from any party who knows d.

Blinding

Let $\langle N, d\rangle$ be Bob's private key and $\langle N, e\rangle$ his corresponding public key. Suppose Marvin wants Bob's signature on a message $M \in Z_{N}^{*}$. Being no fool, Bob refuses to sign M.

Marvin can try the following: he picks a random $r \in Z_{N}^{*}$ and sets $M^{\prime}=r^{e} M \bmod$ N. He then asks Bob to sign the random message M^{\prime}. Bob may be willing to provide his signature S^{\prime} on the innocent-looking M^{\prime}. Marvin now simply computes $S=S^{\prime} / r \bmod N$ and obtains Bob's signature S on the original M. Indeed,

$$
S=\frac{S^{\prime}}{r}=\frac{M^{\prime d}}{r}=\frac{r^{e d} M^{d}}{r}=\frac{r M^{d}}{r}=M^{d}
$$

This technique, called blinding, enables Marvin to obtain a valid signature on a message of his choice by asking Bob to sign a random "blinded" message. Bob has no information as to what message he is actually signing.

Elliptic Curve Group over R

Definition: set of the solutions of Weierstrass equation $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ over a field and the point at infinity \mathcal{O}.

Adding two points

Doubling a point

Elliptic Curve Point Addition and Doubling over $G F(p) p>3$

$$
\begin{gathered}
E: y^{2}=x^{3}+a x+b \\
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \text { and } P_{3}=\left(x_{3}, y_{3}\right)=P_{1}+P_{2} \\
x_{3}=\lambda^{2}-x_{1}-x_{2} \\
y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1} \\
\lambda= \begin{cases}\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)^{-1} & \text { if } P_{1} \neq P_{2} \\
\left(3 x_{1}^{2}+a\right)\left(2 y_{1}\right)^{-1} & \text { if } P_{1}=P_{2}\end{cases}
\end{gathered}
$$

projective coordinates are used to get rid of modular multiplicative inversion

Elliptic Curve Point Multiplication

$$
[k] P=\underbrace{P+P+\cdots+P}_{k}
$$

Require: EC point $P=(x, y)$, integer $k, 0<k<M$, $k=\left(k_{l-1}, k_{l-2}, \cdots, k_{0}\right)_{2}, k_{l-1}=1$ and M
Ensure: $Q=[k] P=\left(x^{\prime}, y^{\prime}\right)$
$Q \leftarrow P$
for i from $l-2$ downto 0 do
$Q \leftarrow 2 Q$
if $k_{i}=1$ then
$Q \leftarrow Q+P$
end if end for

Elliptic Curve Point Addition and Doubling

Require: $P_{1}=(x, y, 1$	$P_{2}=\left(X_{2}, Y_{2}\right.$	Require: $P_{1}=\left(X_{1}, Y^{\prime}\right.$	$\left.Z_{1}, a Z_{1}^{4}\right)$
Ensure: $P_{1}+P_{2}=P_{3}$	$\left(X_{3}, Y_{3}, Z_{3}, a Z_{3}^{\prime}\right)$	Ensure: $2 P_{1}=P_{3}=$	3, $\left.Y_{3}, Z_{3}, a Z_{3}^{4}\right)$
1. $T_{1} \leftarrow Z_{2}^{2}$		1. $T_{1} \leftarrow Y_{1}^{2}$	$T_{2} \leftarrow 2 X_{1}$
2. $T_{2} \leftarrow x T_{1}$		2. $T_{3} \leftarrow T_{1}^{2}$	$T_{2} \leftarrow 2 T_{2}$
3. $T_{1} \leftarrow T_{1} Z_{2}$	$T_{3} \leftarrow X_{2}-T_{2}$	3. $T_{1} \leftarrow T_{2} T_{1}$	$T_{3} \leftarrow 2 T_{3}$
4. $T_{1} \leftarrow y T_{1}$		4. $T_{2} \leftarrow X_{1}^{2}$	$T_{3} \leftarrow 2 T_{3}$
5. $T_{4} \leftarrow T_{3}^{2}$	$T_{5} \leftarrow Y_{2}-T_{1}$	5. $T_{4} \leftarrow Y_{1} Z_{1}$	$T_{3} \leftarrow 2 T_{3}$
6. $T_{2} \leftarrow T_{2} T_{4}$		6. $T_{5} \leftarrow T_{3}\left(a Z_{1}^{4}\right)$	$T_{6} \leftarrow 2 T_{2}$
7. $T_{4} \leftarrow T_{4} T_{3}$	$T_{6} \leftarrow 2 T_{2}$	7.	$T_{2} \leftarrow T_{6}+T_{2}$
8. $Z_{3} \leftarrow Z_{2} T_{3}$	$T_{6} \leftarrow T_{4}+T_{6}$	8.	$T_{2} \leftarrow T_{2}+\left(a Z_{1}^{4}\right)$
9. $T_{3} \leftarrow T_{5}^{2}$		9. $T_{6} \leftarrow T_{2}^{2}$	$Z_{3} \leftarrow 2 T_{4}$
10. $T_{1} \leftarrow T_{1} T_{4}$	$X_{3} \leftarrow T_{3}-T_{6}$	10.	$T_{4} \leftarrow 2 T_{1}$
11. $a Z_{3}^{4} \leftarrow Z_{3}^{2}$	$T_{2} \leftarrow T_{2}-X_{3}$	11.	$X_{3} \leftarrow T_{6}-T_{4}$
12. $T_{3} \leftarrow T_{5} T_{2}$		12.	$T_{1} \leftarrow T_{1}-X_{3}$
13. $a Z_{3}^{4} \leftarrow\left(a Z_{3}^{4}\right)^{2}$	$Y_{3} \leftarrow T_{3}-T_{1}$	13. $T_{2} \leftarrow T_{2} T_{1}$	$a Z_{3}^{4} \leftarrow 2 T_{5}$
14. $a Z_{3}^{4} \leftarrow a\left(a Z_{3}^{4}\right)$		14.	$Y_{3} \leftarrow T_{2}-T_{3}$
latency $=14 T_{M M}$		latency $=8 T_{M M}+$	$6 T_{M A S}$

Modular Addition, Subtraction Circuit over $G F(p)$

Require: $M, 0 \leq A<M$,

$$
0 \leq B<M
$$

Ensure: $C=A+B \bmod M$
$C^{\prime}=A+B$
$C^{\prime \prime}=C^{\prime}-M$
if $C^{\prime \prime}<0$ then

$$
C=C^{\prime}
$$

else
$C=C^{\prime \prime}$
end if

Require: $M, 0 \leq A<M$,

$$
0 \leq B<M
$$

Ensure: $C=A-B \bmod M$
$C^{\prime}=A-B$
$C^{\prime \prime}=C^{\prime}+M$
if $C^{\prime}<0$ then

$$
C=C^{\prime \prime}
$$

else
$C=C^{\prime}$
end if

Power-Analysis Attacks: Why do they work?

Dynamic power consumption is mainly due to the charge and discharge of the load capacitance C_{L}.

Types of Power-Analysis Attacks

Simple Power Analysis (SPA) Attacks:

- every instruction \Longrightarrow unique power-consumption trace
- one measurement

Differential Power Analysis (DPA) Attacks:

- many measurements
- statistical analysis used

SPA Attack on Elliptic Curve Point Multiplication

Require: EC point $P=(x, y)$, integer $k, k=\left(k_{l-1}, k_{l-2}, \cdots, k_{0}\right)_{2}, k_{l-1}=1$ Ensure: $Q=\left(x^{\prime}, y^{\prime}\right)$
$Q \leftarrow P$
for i from $l-2$ downto 0 do
$Q \leftarrow 2 Q$
if $k_{i}=1$ then
$Q \leftarrow Q+P$
end if
end for

The key used during this measurement is 1001100.

Countermeasure for SPA Attack

Require: EC point $P=(x, y)$, integer $k, k=\left(k_{l-1}, k_{l-2}, \cdots, k_{0}\right)_{2}, k_{l-1}=1$ Ensure: $Q=\left(x^{\prime}, y^{\prime}\right)$
$Q \leftarrow P$
for i from $l-2$ downto 0 do
$Q_{1} \leftarrow 2 Q$ $Q_{2} \leftarrow Q_{1}+P$ if $k_{i}=1$ then
$Q \leftarrow Q_{2}$ else
$Q \leftarrow Q_{1}$ end if end for

Current Consumption Measurement for DPA Attack

- Data length: 2400 clock cycles around the 2nd update of Q_{1}.
- Clock frequency: 300 kHz .
- Sampling
frequency:

Pre-Processing

Discrete Fourier transform
between 250 kHz and 375 kHz Clock frequency : 302.8 kHz

maximum in every clock cycle

Correlation Analysis

1. hypothetical model \Longrightarrow predict side-channel output for N inputs.

Prediction is the number of bits changed from 0 to 1 from X_{i} to X_{i+1}
2. Prediction is for:

- a certain moment of time
- a certain key guess

3. Predictions are correlated with the real side-channel output.

- Correlation is high \Longrightarrow model is correct

Results of the Correlation Analysis

Electromagnetic Analysis of an FPGA Implementation of
Elliptic Curve Cryptosystem over $G F(p)$

SEMA Attack

with double and add algorithm

with always double and add algorithm

DEMA Attack

Electromagnetic radiation trace of the FPGA for the attacked point

Correlation Analysis

Third spike

Fifth spike

