1. Find the solution of the initial value problem given below

$$
\begin{gathered}
(2 x y-1) d x+x^{2} d y=0 \\
\text { for } x=1 \quad y=2
\end{gathered}
$$

2. Find the most general solution of the system of linear algebraic equations given below

$$
\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & -1 & 3 \\
2 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
8
\end{array}\right]
$$

3. Find the most general solution of the differential equation given below

$$
L(\mathbf{D}) y=e^{t}+\sin (t) \text { where } L(x)=(x-1)^{3} \quad \mathbf{D}=\frac{d}{d t}
$$

4. Find the linear independent eigenvectors of the matrix \mathbf{A} given below.

$$
\mathbf{A}=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
9 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 9 & 2
\end{array}\right]
$$

1)
2)

$$
(x-1)^{3}=0 \quad x_{1,2,3}=1 \quad y_{h}=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}
$$

$y_{p_{1}}=A \sin t+B \cos t$
$y_{p_{1}^{\prime}}{ }^{\prime}=A \cos t-B \sin t$

$$
y_{p_{1}^{\prime \prime}}^{\prime \prime}=- \text { Asint }-B \cos t
$$

$$
(x-1)^{3}=x^{3}-3 x^{2}+3 x-1
$$

$$
y p_{1}^{\prime \prime \prime}=-A \cos t+B \sin t
$$

$-A \cos t+B \sin t+3 A \sin t+3 B \cos t+3 A \cos t-3 B \sin t-A \sin t-B \cos t$ $2 A \cos t+2 B \cos t=0 \quad A=-B$

$$
\begin{array}{ll}
2(A+B)=0 & -2 B+2 A=1 \\
A=\frac{1}{4} \quad B=-\frac{1}{4}
\end{array}
$$

$$
\begin{aligned}
& y_{P_{1}}=\frac{1}{4} \sin t-\frac{1}{4} \cos t=\frac{1}{4}(\sin t-\cos t)
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & t & t^{2} & 1 & 0 \\
0 & 1 & 2 t & 1 & 0 \\
0 & 0 & 2 & 1 & 1
\end{array}\right| \sim \left\lvert\, \begin{array}{ccccc}
1 & 0 & -t^{2} & 0 & 2 u_{3}^{\prime}=1 \\
0 & 1 & 2 t & 0 & u_{3}^{\prime}=\frac{1}{2} \\
0 & 0 & 2 & 1 & v_{3}=\frac{1}{2} t+d_{3} \\
u_{2}^{\prime}=-2 t u_{3}^{\prime}
\end{array}\right. \\
& \begin{array}{l}
u_{1}^{\prime}=t^{2} u_{3}^{\prime}=t^{2} \frac{1}{2} \quad u_{1}=\frac{t^{3}}{6}+d_{1}^{\prime}=-t \quad u_{2}=-\frac{t^{2}}{2}+d_{2}
\end{array} \\
& y_{p_{2}}=\left(\frac{t^{3}}{6}+d_{1}\right) e^{t}+\left(-\frac{t^{2}}{2}+d_{2}\right) t e^{t}+\left(\frac{1}{2} t+d_{3}\right) t^{2} e^{t} \\
& =e^{t}\left[\left(\frac{t^{3}}{6}\right)+d_{3} t^{2}+d_{2} t+d_{1}\right] \\
& y_{\rho}=e^{t}\left(\frac{t^{3}}{6}+d_{3} t^{2}+d_{2} t+d_{1}\right)+\frac{1}{4}(\sin t-\cos t)
\end{aligned}
$$

$$
\begin{aligned}
& M=2 x y-1 \quad N=x^{2} \quad \frac{\partial M}{\partial y}=2 x \quad \frac{\partial N}{\partial x}=2 x \text { exact } \\
& \frac{\partial g}{\partial x}=M \quad \frac{\partial g}{\partial y}=N \quad \frac{\partial g}{\partial x} d x=\int M d x=\int(2 x y-1) d x=x^{2} y-x+c(y)=g(x, y) \\
& \frac{\partial y}{\partial y}-N(x, y)=x^{2} \\
& x^{2}+c^{\prime}(y)=x^{2} \\
& c(y)=c_{1} \quad g(x, y)=x^{2} y-x+c_{1} \\
& d(g(x, y))=0 \quad g(x, y)=c_{2} \\
& x^{2} y-x+c_{1}=c_{2} \\
& x^{2} y-x=c_{3} \\
& 1^{2} \cdot 2-1=c_{3} \quad c_{3}=1
\end{aligned}
$$

