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Abstract—Bad smells, also known as code smells or 
disharmonies are characteristics of software that may 
indicate a code or design problem because of insufficient 
abstraction that makes software hard to evolve and 
maintain, and may trigger refactoring of code.  Since these 
defects reduce understandability, flexibility and reusability 
of the system; adding new features, adapting to the changes, 
and finding design flaws are getting harder. In order to 
reduce software cost, especially in the maintenance, 
detection of bad smells is important. One of the most 
common bad smells is “God Class”. A class is identified as 
God Class if it interacts with many other classes, and has a 
very high complexity and low cohesion. In this paper, a 
method that is based on decision tree is proposed for 
detecting God Classes. It is a supervised learning method 
and creates models to classify unseen samples based on 
training data. In this study, training data is formed as 
follows: software classes are samples, metrics are their 
attributes and tags show whether the class is a God Class or 
not. A database is prepared to train and validate our 
decision tree model, using information that is collected from 
open-source projects. The adaptable model can be calibrated 
during the development of a project by training it with 
detection results of earlier versions so that it can detect 
defects in later versions successfully. The model can be also 
prepared to work on software systems of a specific domain 
by training the model with a data collected from systems in 
the same domain. Empirical results of the study indicate that 
the decision tree method can be used successfully to detect 
God Classes. 
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I. INTRODUCTION 

Software maintenance cost is typically more than 50% 
of the cost of the total software life cycle. Detection of bad 
smells in design during software development and 
maintenance is an important task in order to reduce 
development time and resource cost.  

Software quality assessment is an important key factor 
to determine critical parts, because high-quality parts of 
software are less error-prone and easy to maintain. On the 
other hand, more complex parts with a lower quality level 
have the opposite situation. The low-level quality parts 
mostly have design-level defects, which show weaknesses 
in design and present symptoms that are called bad smells. 
Bad smells usually do not indicate bugs and they do not 

affect the program functioning; but may slow down the 
development or increase the risk of bugs or failures in the 
future. These parts need refactoring. At that point, the 
measurement of software quality is important to expose 
the good and bad parts of a software system.   

Software design metrics are basic objects that can be 
used for the quality measurement. Metrics are the 
measurement values of software entities like lines of code 
or number of methods that could be extracted from source 
codes. In object-oriented software, in order to recognize 
the structure of classes and the relations among them, there 
are also high-level metrics to express concepts such as 
cohesion, coupling and complexity.   As object-oriented 
software metrics give important evidence about design 
quality, they can help software engineers to determine 
critical low-quality parts, that should be considered firstly 
on maintenance and refactoring. Therefore, developers 
start refactoring from these low-quality parts to improve 
the internal quality of their product.  

It is difficult to work with metrics to create certain 
rules for detecting bad smells because of their various 
types and distributions. Also, different metrics should be 
used together to create a model for quality assessment; but 
it is difficult to determine the roles, weights and thresholds 
of metrics in creating such a model. In this paper we 
propose a method for detecting the well-known bad smell 
called “God Class” [24], in designs of object-oriented 
systems by using decision tree.  God classes have high 
complexity and incorporate more than one functionality 
that semantically belongs elsewhere; therefore they have 
negative impact on quality attibutes like maintainability, 
reusability and understandability. The decision tree can 
generate the rules that consist of multiple metrics by 
learning the properties of the systems that are examined in 
advance. The detection models that are created in a 
decision tree form can adapt to different types of software 
systems if they are trained with proper data. The user of 
the model does not need to be aware of the specific 
combinations of metrics or their thresholds.  

The creation of the decision tree is based on metrics of 
software classes. In order to obtain the results and validate 
our method we analyze long-lived open source projects, 
which are in different sizes and domains. We prepare a 
database using these projects and save metric values of 
classes and their actual God Class information. We use 
these data as train and test sets according to three aspects: 
in the same project, among different releases of a project 
and among different projects. For the first aspect, we split 



data of a software system into train and test sets. Here we 
try to find out the answer of the following question. When 
we know some classes of a software system that are God 
Class or not, can we classify the rest of them? For the 
second aspect, we use data from a release of a software 
system as train set and then data obtained from one of the 
following releases as test set; because we want to discover 
whether the method can be used to detect defects in 
successor releases of a software system when we have 
information about defects in an earlier release of the same 
system. For the final aspect, we use data from different 
software systems for the train and test sets, because we 
want to find out whether a model that is created using data 
from a software system can be used to detect God Classes 
in other software systems.  

In this study, we select metrics that are defined in CK 
suit [1], QMOOD [2] and in [13] because of their possible 
relation to God Classes. We give all metrics, which are 
explained in Section 3 as parameters to the C4.5 algorithm 
[19] that combines poroper metrics and creates decision 
tree models to find God Classes. The results show that this 
approach can be successfully used to find this common 
software bad smell.  

The remainder of this paper is organized as follows: 
Related works are presented in the next section. Dataset 
and metrics that are used in empirical analysis are 
presented in Section 3. Section 4 shows the proposed 
method and the system architecture, and Section 5 shows 
the case studies and obtained results. Final section 
concludes the paper. 

II. RELATED WORK 

Webster [21] wrote the first book on “antipatterns” in 
object-oriented development; his contribution covers 
conceptual, political, coding, and quality-assurance 
problems. The code smells concept was introduced by 
Fowler and Beck [3], who defined 22 different kinds of 
smells and suggested where developers should apply 
refactorings. Later, other authors like Mäntylä [22] 
identified more smells and proposed their classifications. 

Several approaches to specify and detect smells have 
been proposed in the literature. Travassos et al. [17] 
introduced manual inspections and reading techniques to 
identify code smells. Marinescu presented general 
approaches to find code smells [4] and after this work 
Marinescu et al. [5, 6, 7], presented metric-based detection 
strategies, which capture deviations from good design 
principles. These strategies consist of combining metrics 
with set operators and comparing their values to absolute 
and relative thresholds. Lanza and Marinescu introduced 
the detection strategies in a book [13]. 

Similarly to Marinescu, Munro [23] proposed metric-
based heuristics to detect code smells; the detection 
heuristics are derived from template similar to the one 
used for design patterns. He also performed an empirical 
study to justify the choice of metrics and thresholds for 
detecting code smells. 

Li and Shatnawi [8] work on relation between bad 
smells and software bugs.  

Previous studies are generally based on predefined 
rules that are used to make boolean decisions on whether a 
class has a smell or not. In our approach we train our 
model and generate decision rules using data collected 
from different exemplary software systems. For different 
systems, the rules can be regenerated or adapted 
dynamically. Our approach neither relies on predefined 
rules nor needs some threshold values that are known in 
advance. 

 

III.  BACKGROUND 

A. God Classes 

God Class is one of the most common disharmonies, 
which do not satisfy identity harmony principles. Lanza 
and Marinescu [13] describe software identity harmony as 
follows. “Operations and classes should have a 
harmonious size i.e., they should avoid both size 
extremities. Each class should present its identity (i.e., its 
interface) by a set of services, which have one single 
responsibility and which provide a unique behavior data 
and operations should harmoniously collaborate within the 
class to which they semantically belong.” 
A class is identified as God Class if it interacts with many 
other classes, and has a very high complexity and low 
cohesion opposite to the idendity harmony principle.  

B. Studied Metrics 

In order to detect God Classes; coupling, cohesion 
complexity and size-related metrics are selected because of 
the God Class definition. We collect 13 metrics that are 
defined in CK [1] metric suite, QMOOD [2] and [13].  The 
decision tree method creates the model dynamically 
according to the training data by selecting the specific 
combinations of metrics and their thresholds.  

Studied metrics are separated and explained in the 
following three groups. 

1) Coupling Metrics 

 ATFD (Access to Foreign Data): It is the number of 
classes whose attributes are directly or indirectly reachable 
from the investiggated class.  Classes with a high ATFD 
value rely strongly on data of other classes and that can be 
the sign of the God Class defect. 

CBO (Coupling Between Object Classes): It is the 
number of classes that a class is coupled to. It is calculated 
by counting other classes whose attributes or methods are 
used by a class, plus those that use the attributes or 
methods of the given class. Inheritance relations are 
excluded. As a measure of coupling CBO metric is related 
with reusability and testability of the class. More coupling 
means that the code becomes more difficult to maintain 
because changes in other classes can also cause changes in 
that class. God Classes tend to be having more 
connectivity to other classes. 

 RFC (Response For a Class): It is the number of the 
methods that can be potentially invoked in response to a 
public message received by an object of a particular class. 



If the number of methods that can be invoked from a class 
is high, it is more complex and highly coupled to some 
methods. God Classes tend to invoke a lot of methods 
from other classes. 

DIT (Depth of Inheritance Tree): It is the maximum 
length from the class being measured to the root of the 
inheritance tree. If it is not extended from any class this 
value is 0. If there are more than one ancestor branch it is 
the longest way to the root. A class that is located deeply 
in the inheritance hierarchy inherits a lot of properties 
from many ancestor classes. Inheritance is also another 
type of coupling. Deeper trees constitute greater design 
complexity, since more methods and classes are involved. 
It is difficult to to predict its behavior, design and maintain 
such a class; therefore it is likely to contain a defect. 

2) Cohesion Metrics 

TCC (Tight Class Cohesion): Methods that use at 
least one attribute of class in common are defined as 
strongly-connected. TCC shows the ratio of strongly-
connected method couples to all method couples. Low 
values of TCC may indicate that the cohesion of the class 
is low because it is not well designed. 

LCOM (Lack of Cohesion in Methods): It is a 
measure about how methods of a class are related to each 
other. Low cohesion means that the class implements more 
than one responsibility. A change request by either a bug 
or a new feature, on one of these responsibilities will result 
change of that class. Lack of cohesion also influences 
understandability and implies classes should probably be 
split into two or more subclasses. God Classes tend to be 
doing more irrelevant and complex tasks. 

 CAM (Cohesion Among Methods): It is a measure 
of cohesion based on parameter types of methods instead 
of attributes used by them. God Classes tend to have 
various unrelated responsibilities therefore they should 
have methods that have different type of parameters. 

3) Complexity and Size Metrics 

WMC (Weighted Methods per Class): It is the 
weighted sum of all class’ methods an represents the 
complexity of a class. It is equal to number of methods, if 
the complexity is taken as 1 for each method. More 
complex classes tend to be a God Class. It is expected that 
complex classes have higher change rates because of bug 
fixing and refactoring activities. 

LOC (Lines of Code): It is the number of all 
nonempty, non-commented lines of the body of the class 
and all of its methods. LOC is a measure of size and also 
indirectly related to the class complexity. Since God 
Classes are complex, their lines of code values tend to be 
high. 

NOPA (Number of Public Attributes): The number 
of public attributes of the class.  

NOAM (Number of Accessor Methods): The number 
of getter and setter methods of the class. These methods 
are used to access private or protected attributes of the 
classes. 

NOA (Number of Attributes): The number of 
attributes of the class.  

NOM (Number of Methods): The number of methods 
in a class. 

NOPA, NOAM and NOA metrics are related to the 
number of attributes and NOM metric is related to the 
number of methods of a class. These metrics can be used 
to identify god classes, which are difficult to maintain 
because they contain too many attributes and methods 
[18].  

C. Studied Software Systems 

In this study the data set is extracted from the 
following open source projects. 

ArgoUML [9] is a long-live UML modeling project.  
JFreeChart[10] is an open source drawing library. 
Xerces [11] is an Apache project that includes open 

source XML parser and related software. 
These projects are selected since they are well-known 

long-lived projects.  
 

IV.  THE GOD CLASS DETECTION APPROACH 

In this study, we propose an approach for detecting the 
common design defect God Class. We create decision tree 
models for detecting God Classes using data about 
examined software classes. For training and evaluating the 
model, we prepare a database by extracting metric values 
and God Class information from open source projects.  

In our approach, first we extract metric values of 
software classes from different open-source projects using 
iPlasma [16] and Equality [12]. Before we give the details 
of our detection method, we show some properties of 
software metrics to explain the necessary and benefits of 
the prposed method. Analysis on the metric values reveals 
properties of metrics that make it difficult to work with 
them to create certain rules. First observation is that the 
metric values are generally power-law distribution. The 
metric distributions of the Xerces 2.7 project are sperated 
into two groups and they are given in Figure 5 and Figure 
6. In this figures x-axis is the value of the metric and y-
axis is the number of classes with a specific metric value. 
Many classes have same or similar values. Furthermore, 
metrics have different intervals and various types. Some of 
them are integers between [0,+∞) (such as RFC) and some 
of them are floating numbers between [0, 1] (such as 
WOC). Interpretation of metrics also varies in detection of 
bad smells. While high values of some metrics (ATFD, 
WMC) indicate design defects, in contrast low values of 
some other metrics (TCC) are warning signals.  Also, to 
detect design defects in a software system different metrics 
should be used together. To overcome these difficulties we 
benefit from artificial intelligence and use the decision 
tree. This method uses attributes, in our case metrics, 
together to classify software classes. The model is created 
in a training phase, so that certain thresholds of the metrics 
do not need to be given manually or know in advance, 
because they are determined and learned by the model.  



A. Preparing the Database 

We prepare a dataset for each software project using 
information that is collected from the classes. In the 
representation of data: software classes are samples, 
metrics are their attributes and statuses as “God Class” or 
“Normal Class” are their tags. We examine the software 
classes and tag them as God Class if they include this 
design defect. Defect-free classes are tagged as Normal 
Class. To assign the tags to classes, we use three different 
tools [16, 12, 18] as explained below.  

We built dataset for each investigated project as 
follows: 

 
1) We extract software metrics of each class and record 

them to the database. 
2) We determine candidate classes that are possibly God 

Classes using three different tools [16, 12, 18]. 
a) If all the three tools mark a class as a God Class 

we also tag it as a God Class without a further 
investigation. 

b) If all the three tools cannot agree upon the status 
of the class we analyze the source code manually 
and decide whether the detected candidate class is 
really a God Class or not. 

B. Creating the Detection Model  

In this study we use decision tree models to classify 
software classes as God Class and Normal Class. A 
decision tree is defined as a connected, acyclic, undirected 
graph, with a root node, zero or more internal nodes, and 
one or more leaf nodes. All nodes, except the root and the 
leaves, are internal nodes. Leaves show the tag of the 
objects and inner nodes include attributes and their 
outgoing edges present the rules to compare the object 
under test with the attributes of the train samples. The 
rules to examine objects are generated at the train phase by 
using train samples that are obtained from known projects. 
In the detection (test) pahase, starting from the root node, 
attributes of the test object are avaluated according to 
conditions  defined in the inner nodes.  Depending on the 
results of these evaluations the test object moves in the tree 
and finally reaches the leaf that shows the corresponding 
tag. Exemplary decision tree models that were created in 
our study for different software systems are shown in 
Figure 2, Figure 3 and Figure 4. In our case, leaves 
(rectangles) show the tag of the tested class, namely “1” 
represents God Class and “0” represents Normal Class. 
The inner nodes hold class metrics that take place in the 
comparison operations, and the edges show the conditions 
and the branches to move.  

In this study, to generate decision trees we applied the 
C4.5 algorithm, which is developed by Ross Quinlan [19]. 
At each node of the tree, C4.5 chooses one attribute of the 
data that most effectively splits the set of samples into 
subsets so that the samples in each subset belon mostly to 
a specific category. The attribute with the highest 
normalized information gain (difference in entropy) is 
chosen for splitting the samples to branches. The C4.5 
algorithm then recurses on the smaller sublists [20] until 

all the samples in a branch belong to the same category. 
J48 is one of the implementation of this algorithm in Weka 
[15]. It generates a pruned or unpruned decision tree. It 
uses pruning in order to get rid of over-fitting of decision 
tree, thus it creates smaller and less complex trees [14].  

We used pruned version of the algorithm with 0.25 
confidence factor in this empirical study. At the initial 
state we give all metric values and God Class information 
for all classes to the algorithm to construct the tree model. 
The algorithm, iteratively, selects proper metrics and 
related decision conditions (thresholds) to split the set 
class samples according to the tags (God Class or not). 
After iterations have been finished, the model is created in 
the form of a decision tree that includes the detection  
rules. Then we can use this model to predict God Classes 
in the validation (test) set that has unvisited class samples. 
We note that, the location of metrics in the tree and the 
comparison rules are determined in the training phase 
automatically and they can be adapted to different systems. 
The user of the model does not need to select these 
parameters.   

Additionally decision tree method requires a short 
running time to create models. We measure the time that is 
taken to create the models on a computer that has 2.4 GHz 
Intel Core i5 processor, 8 GB RAM and Mac OS X 
operating system. In all experiments the models are built in 
less than 0.1 seconds. 

 

C. Validation Methods 

To validate our results holdout validation method is 
used in this article. It is a natural approach to split the 
available data into two non-overlapping parts: one for 
training and the other one for testing. The test data is held 
out and not used during training. Holdout validation avoids 
the overlap between training data and test data. Figure 1 
shows this process. 

 
Figure 1.  Holdout validation method 

D. Measurements and evaluation 

To evaluate our method we measure the accuracy, 
precision, recall and F-measure (F1) values that are 
obtained in the experiments.  The calculations are based on 
the status of the results as true positive (tp), true negative 
(tn), false positive (fp) and false negative (fn). The 
accuracy gives the portion of correctly classified classes in 
the whole data set. Precision is the number of software 
classes correctly classified as “God Class” divided by the 
total number of classes classified as “God Class”. The 



precision can also be calculated for “Normal classes”. In 
this case it will show the number of software classes 
correctly classified as “Normal Class” divided by the total 
number of classes classified as “Normal Class”. High 
precision means that the method generates more correct 
results than incorrect. Recall is the number of software 
classes correctly classified as “God Class” divided by the 
total number of real “God Classes”. Similarly it can also 
be defined for “Normal Classes”. High recall means that 
the method can detect most of the “God Classes” (or 
“Normal Classes”). The F-measure (F1) enables us to 
consider the precision and the recall together. It can be 
interpreted as a weighted average of the precision and 
recall. The equations are given below:  
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If the validation dataset has unbalanced number of 

samples for God Classes and Normal Classes, accuracy 
could not be used solely to evaluate the model. In our 
dataset the number of “God Class” samples is less than 
“Normal Class” samples, and we aim to predict the “God 
Classes”. Therefore we consider the value of precision, 
recall and f-measure together to evaluate the model. For 
example if our dataset had 1000 samples and only 10 of 
samples were “God Class” and our model tagged all 
samples as “Normal” we would reach 99% accuracy, on 
the other hand God Class precision, recall and f-measure 
value would be all zero.  

 

V. EXPERIMENTAL RESULTS 

We evaluate the performance and practical usability of 
our approach in three different ways. First, we split one 
software system’s dataset into train and test sets. Here we 
want to discover, whether it is possible to train the model 
with a part of a program and then detect defects in the 
remaining part of the same program. Second, we use one 
software system’s different releases as train and test sets. 
This evaluation method is used to see if we can train the 
model in earlier development phases of the program and 
then use the model to detect defects in later releases. Third, 
we use one software system’s dataset as train and another 
software system’s dataset as test set. Here we try to train 
the model using data of a program and then to apply it to 
other programs to detect defects. 

A. Investigating one software system  

In this experiment Apache Xerces 2.7, Argo UML 2.4 
and JFreeChart 0.9.21 projects are investigated. We use 
the holdout validation method by splitting dataset into two 
groups as train and test sets for each project. We randomly 
select 60% of samples from dataset for each tag, and put 

them into the train set. The remaining 40% of the dataset 
constitutes the test set. We create the decision tree model 
by using the train set, and then measure the success of the 
model using the test set. 

The Xerces project includes 786 Normal and 55 God 
Classes. After splitting, train set contains 470 Normal 
Classes and 35 God Classes and test set includes 316 
Normal and 20 God Classes. The model that is created 
after training for this project, is shown in Figure 2.  

 
Figure 2.  Decision tree model of the Xerces 2.7 

When we apply the model on the test set, it detects 18 
God Classes correctly. It classifies two of God Classes as 
Normal Class and tags four of Normal Classes as God 
Class. Precision, recall and f-measure results for the God 
Class, Normal Class and their weighted averages are given 
in Table I. Allthough the most important results are about 
the detection of the God Classes, to show the overall 
performance of the method we also give the results about 
the detection of the Normal Classes. Accuracy of the 
detection is 98.2% and God Class precision and recall 
values are 81.8% and 90% respectively.  This means that 
we could find 82% of God Classes and 90% of marked 
classes are really God Classes.  

TABLE I.  XERCES 2.7 HOLDOUT VALIDATION RESULTS 

 
Precision Recall F-measure 

God Class 0.818  0.900 0.857 
Normal Class 0.994  0.987 0.990 
Weighted Average 0.983  0.982 0.983 

 
In the second experiment we run our method on the 

Argo UML 0.24 project that includes 1584 Normal and 30 
God Classes. After splitting the samples into two groups, 
the train set contains 951 Normal Classes and 17 God 
Classes and the test set includes 633 Normal and 13 God 
Classes. The model that is created after training for this 
project, is shown in Figure 3. 



 
Figure 3.  Decision tree model of the Argo UML 0.24 

After we run our method on the test set, the results 
show that the model detects 10 of 13 God Classes 
correctly. The evaluation measurements are given in Table 
II.  Accuracy of the detection is 99.5% and God Class 
precision and recall values are 100% and 76.9% 
respectively.  The recall value shows that the classifier did 
not misclassify any Normal Class as God Class. 

TABLE II.  ARGOUML  0.24 HOLDOUT VALIDATION RESULTS 

 
Precision Recall F-measure 

God Class 1.000  0.769 0.870 
Normal Class 0.995  1.00 0.998 
Weighted Average 0.995  0.995 0.995 

 
 We test our method also on the JFreeChart 0.9.21 project 
that includes 603 Normal and 40 God Classes. In this 
experiment the train set contains 363 Normal Classes and 
23 God Classes and test set includes 240 Normal and 17 
God Classes. The model, which is created after training for 
this project, is shown in Figure 4. 

 
Figure 4.  Decision tree model of the JFreeChart 0.9.21 

The model detects 17 God Classes correctly. It 
classifies five Normal Classes as God Class. According to 
the results in Table III, we could find 100% of God 
Classes, and 77% of marked classes are really God 
Classes. 

TABLE III.  JFREECHART 0.9.21 HOLDOUT VALIDATION RESULTS 

 
Precision Recall F-measure 

God Class 0.773  1.000 0.872 
Normal Class 1.000  0.979 0.989 
Weighted Average 0.985  0.981 0.982 
 

For each software systems the decision tree creates 
dynamically different models according to the training set. 
After this group of experiments we can conclude that the 
decision tree model can be trained with a part of a software 
system and then it can be used to detect God Classes in the 
remainder of the same system. 

B. Investigating different versions of a software system 

In this experiment we investigate two different releases 
of the ArgoUML: 0.24 and 0.32. They contain 1584 and 
1796 Normal Classes; 30 and 27 God Classes respectively. 
We trained our model using ArgoUML 0.24 and tested it 
using ArgoUML 0.32.  

The results show that the model detects 22 God Class 
correctly. It tags five of God Classes as Normal Class and 
two of Normal Classes as God Class. Accuracy of the 
detection is 99.6% and Table IV shows the other results. 
We reach in detection of God Classes more than 91% and 
81% success for the precision and recall results 
respectively.  

TABLE IV.  TRAIN SET: ARGOUML  0.24, TEST SET: ARGOUML  0.32 

 
Precision Recall F-measure 

God Class 0.917  0.815 0.863  
Normal Class 0.997  0.999 0.998  
Weighted Average 0.996  0.996 0.992  

 
We deduce that we can create a model with data from a 

particular release and use it in the successor releases of the 
software system to detect design defects. In some releases, 
the detection results of the model can be investigated and 
if it is necessary, the model can be retrained using data 
from the current release. In that way, the model can be 
adapted to the project and can generate more accurate 
results in later releases. 

C. Investigating different software systems 

In this experiment we investigate the detection 
capability of our approach if train and test software 
systems are different. We train our model using Xerces 2.7 
and test it with JFreeChart 0.9.21 and ArgoUML 0.32. 
JFreeChart 0.9.21 contains 603 Normal and 40 God Class 
samples. 



After an analysis we see that the model that was 
created using Xerces 2.7 finds 20 God Classes correctly, 
tags seven of God Classes as Normal Class and tags one 
Normal Class as God Class for the JFreeChart 0.9.21 
project. On the other hand, for the ArgoUML 0.32 project, 
it finds 35 God Class correctly, tags five of God Classes as 
Normal Class and tags four of Normal Classes as God 
Class. The results are given in Table V and Table VI for 
the JFreeChart and ArgoUML projects respectively. 

TABLE V.  TRAIN: XERCES 2.7,   TEST:  JFREECHART 0.9.21  

 
Precision Recall F-measure 

God Class 0.897  0.875  0.886  
Normal Class 0.992  0.993  0.993  
Weighted Average 0.986  0.986  0.986  

TABLE VI.  TRAIN: XERCES 2.7,   TEST:  ARGOUML  0.32  

 
Precision Recall F-measure 

God Class 0.952  0.741  0.833 
Normal Class 0.996  0.999  0.998 
Weighted Average 0.995  0.996  0.995 
 

The accuracy value is 98.6% for the JFreeChart 0.9.21 
and 99.5 for the ArgoUML 0.32. The precision and recall 
values are greater than 89% and 74% respectively. These 
results encourage us to claim that decision tree model that 
is prepared with data from a software system can be used 
for detecting defects in other software systems. It is 
obvious that to support this idea more experiments on 
different software system should be conducted. Since, we 
here aim only to show the applicability of the approach we 
left additional experiments as future work. 

VI.  CONCLUSION 

In this study, we propose the decision tree method for 
detecting the design defect that is called God Class in 
software systems. To validate our approach we 
investigated datasets that include object-oriented metrics 
of classes  of open source software projects. Results from 
case studies verify our methodology and show that the 
God Classes in software systems can be successfully 
detected using decision trees that are created and trained 
with proper metrics. We validate our method in three 
different aspects to show its usability. First, we use some 
of classes of a program to train the model and then the 
method is applied to the rest of the same program to detect 
defects. Second, we create and train the decision tree with 
data from an earlier release of a software system and then 
use this model to detect defects in later releases of the 
same system. The model can also be retrained in some 
middle releases to adapt it to the characteristic of the 
software system. The third validation aspect is to train and 
to tests the model using totally different software systems. 
These experiments also gave reasonable results. 

The proposed approach can reduce the maintenance 
cost by predicting the classes that are affected by God 

Classes and need refactoring. Decision tree is a supervised 
learning method and it selects the most significant metrics 
and their thresholds to predict God Classes according to 
training dataset.  When we examined the models we saw  
that WMC, RFC, CBO, NOA, NOPA, ATFD, TCC, CAM 
were mostly selected metrics in our experiments. 

 In this study we trained the model to detect God 
Classes however the models can also be trained for 
detecting other types of bad smells using related 
metrics.As a future work, we want to apply this approach 
to predict other disharmonies like Data Class, 
Schizophrenic Class. In addition,  to generalize the results 
we need to expand the datasets by investigating different 
software systems from several area and programming 
languages.  
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Figure 5.  Metric distributions of the Xerces 2.7  (Part 1)    



 
Figure 6.  Metric distributions of the Xerces 2.7  (Part 2)    

 


