
Detection of God Classes in Object-Oriented Software Using Decision Tree

Sinan Eski, Feza Buzluca
Computer Engineering

Istanbul Technical University
{eski, buzluca}@itu.edu.tr

Abstract—Bad smells, also known as code smells or
disharmonies are characteristics of software that may
indicate a code or design problem because of insufficient
abstraction that makes software hard to evolve and
maintain, and may trigger refactoring of code. Since these
defects reduce understandability, flexibility and reusability
of the system; adding new features, adapting to the changes,
and finding design flaws are getting harder. In order to
reduce software cost, especially in the maintenance,
detection of bad smells is important. One of the most
common bad smells is “God Class”. A class is identified as
God Class if it interacts with many other classes, and has a
very high complexity and low cohesion. In this paper, a
method that is based on decision tree is proposed for
detecting God Classes. It is a supervised learning method
and creates models to classify unseen samples based on
training data. In this study, training data is formed as
follows: software classes are samples, metrics are their
attributes and tags show whether the class is a God Class or
not. A database is prepared to train and validate our
decision tree model, using information that is collected from
open-source projects. The adaptable model can be calibrated
during the development of a project by training it with
detection results of earlier versions so that it can detect
defects in later versions successfully. The model can be also
prepared to work on software systems of a specific domain
by training the model with a data collected from systems in
the same domain. Empirical results of the study indicate that
the decision tree method can be used successfully to detect
God Classes.

Keywords; Software Quality; Bad Smells, Disharmonies;
God Classes; Decision Tree

I. INTRODUCTION

Software maintenance cost is typically more than 50%
of the cost of the total software life cycle. Detection of bad
smells in design during software development and
maintenance is an important task in order to reduce
development time and resource cost.

Software quality assessment is an important key factor
to determine critical parts, because high-quality parts of
software are less error-prone and easy to maintain. On the
other hand, more complex parts with a lower quality level
have the opposite situation. The low-level quality parts
mostly have design-level defects, which show weaknesses
in design and present symptoms that are called bad smells.
Bad smells usually do not indicate bugs and they do not

affect the program functioning; but may slow down the
development or increase the risk of bugs or failures in the
future. These parts need refactoring. At that point, the
measurement of software quality is important to expose
the good and bad parts of a software system.

Software design metrics are basic objects that can be
used for the quality measurement. Metrics are the
measurement values of software entities like lines of code
or number of methods that could be extracted from source
codes. In object-oriented software, in order to recognize
the structure of classes and the relations among them, there
are also high-level metrics to express concepts such as
cohesion, coupling and complexity. As object-oriented
software metrics give important evidence about design
quality, they can help software engineers to determine
critical low-quality parts, that should be considered firstly
on maintenance and refactoring. Therefore, developers
start refactoring from these low-quality parts to improve
the internal quality of their product.

It is difficult to work with metrics to create certain
rules for detecting bad smells because of their various
types and distributions. Also, different metrics should be
used together to create a model for quality assessment; but
it is difficult to determine the roles, weights and thresholds
of metrics in creating such a model. In this paper we
propose a method for detecting the well-known bad smell
called “God Class” [24], in designs of object-oriented
systems by using decision tree. God classes have high
complexity and incorporate more than one functionality
that semantically belongs elsewhere; therefore they have
negative impact on quality attibutes like maintainability,
reusability and understandability. The decision tree can
generate the rules that consist of multiple metrics by
learning the properties of the systems that are examined in
advance. The detection models that are created in a
decision tree form can adapt to different types of software
systems if they are trained with proper data. The user of
the model does not need to be aware of the specific
combinations of metrics or their thresholds.

The creation of the decision tree is based on metrics of
software classes. In order to obtain the results and validate
our method we analyze long-lived open source projects,
which are in different sizes and domains. We prepare a
database using these projects and save metric values of
classes and their actual God Class information. We use
these data as train and test sets according to three aspects:
in the same project, among different releases of a project
and among different projects. For the first aspect, we split

data of a software system into train and test sets. Here we
try to find out the answer of the following question. When
we know some classes of a software system that are God
Class or not, can we classify the rest of them? For the
second aspect, we use data from a release of a software
system as train set and then data obtained from one of the
following releases as test set; because we want to discover
whether the method can be used to detect defects in
successor releases of a software system when we have
information about defects in an earlier release of the same
system. For the final aspect, we use data from different
software systems for the train and test sets, because we
want to find out whether a model that is created using data
from a software system can be used to detect God Classes
in other software systems.

In this study, we select metrics that are defined in CK
suit [1], QMOOD [2] and in [13] because of their possible
relation to God Classes. We give all metrics, which are
explained in Section 3 as parameters to the C4.5 algorithm
[19] that combines poroper metrics and creates decision
tree models to find God Classes. The results show that this
approach can be successfully used to find this common
software bad smell.

The remainder of this paper is organized as follows:
Related works are presented in the next section. Dataset
and metrics that are used in empirical analysis are
presented in Section 3. Section 4 shows the proposed
method and the system architecture, and Section 5 shows
the case studies and obtained results. Final section
concludes the paper.

II. RELATED WORK

Webster [21] wrote the first book on “antipatterns” in
object-oriented development; his contribution covers
conceptual, political, coding, and quality-assurance
problems. The code smells concept was introduced by
Fowler and Beck [3], who defined 22 different kinds of
smells and suggested where developers should apply
refactorings. Later, other authors like Mäntylä [22]
identified more smells and proposed their classifications.

Several approaches to specify and detect smells have
been proposed in the literature. Travassos et al. [17]
introduced manual inspections and reading techniques to
identify code smells. Marinescu presented general
approaches to find code smells [4] and after this work
Marinescu et al. [5, 6, 7], presented metric-based detection
strategies, which capture deviations from good design
principles. These strategies consist of combining metrics
with set operators and comparing their values to absolute
and relative thresholds. Lanza and Marinescu introduced
the detection strategies in a book [13].

Similarly to Marinescu, Munro [23] proposed metric-
based heuristics to detect code smells; the detection
heuristics are derived from template similar to the one
used for design patterns. He also performed an empirical
study to justify the choice of metrics and thresholds for
detecting code smells.

Li and Shatnawi [8] work on relation between bad
smells and software bugs.

Previous studies are generally based on predefined
rules that are used to make boolean decisions on whether a
class has a smell or not. In our approach we train our
model and generate decision rules using data collected
from different exemplary software systems. For different
systems, the rules can be regenerated or adapted
dynamically. Our approach neither relies on predefined
rules nor needs some threshold values that are known in
advance.

III. BACKGROUND

A. God Classes

God Class is one of the most common disharmonies,
which do not satisfy identity harmony principles. Lanza
and Marinescu [13] describe software identity harmony as
follows. “Operations and classes should have a
harmonious size i.e., they should avoid both size
extremities. Each class should present its identity (i.e., its
interface) by a set of services, which have one single
responsibility and which provide a unique behavior data
and operations should harmoniously collaborate within the
class to which they semantically belong.”
A class is identified as God Class if it interacts with many
other classes, and has a very high complexity and low
cohesion opposite to the idendity harmony principle.

B. Studied Metrics

In order to detect God Classes; coupling, cohesion
complexity and size-related metrics are selected because of
the God Class definition. We collect 13 metrics that are
defined in CK [1] metric suite, QMOOD [2] and [13]. The
decision tree method creates the model dynamically
according to the training data by selecting the specific
combinations of metrics and their thresholds.

Studied metrics are separated and explained in the
following three groups.

1) Coupling Metrics

 ATFD (Access to Foreign Data): It is the number of
classes whose attributes are directly or indirectly reachable
from the investiggated class. Classes with a high ATFD
value rely strongly on data of other classes and that can be
the sign of the God Class defect.

CBO (Coupling Between Object Classes): It is the
number of classes that a class is coupled to. It is calculated
by counting other classes whose attributes or methods are
used by a class, plus those that use the attributes or
methods of the given class. Inheritance relations are
excluded. As a measure of coupling CBO metric is related
with reusability and testability of the class. More coupling
means that the code becomes more difficult to maintain
because changes in other classes can also cause changes in
that class. God Classes tend to be having more
connectivity to other classes.

 RFC (Response For a Class): It is the number of the
methods that can be potentially invoked in response to a
public message received by an object of a particular class.

If the number of methods that can be invoked from a class
is high, it is more complex and highly coupled to some
methods. God Classes tend to invoke a lot of methods
from other classes.

DIT (Depth of Inheritance Tree): It is the maximum
length from the class being measured to the root of the
inheritance tree. If it is not extended from any class this
value is 0. If there are more than one ancestor branch it is
the longest way to the root. A class that is located deeply
in the inheritance hierarchy inherits a lot of properties
from many ancestor classes. Inheritance is also another
type of coupling. Deeper trees constitute greater design
complexity, since more methods and classes are involved.
It is difficult to to predict its behavior, design and maintain
such a class; therefore it is likely to contain a defect.

2) Cohesion Metrics

TCC (Tight Class Cohesion): Methods that use at
least one attribute of class in common are defined as
strongly-connected. TCC shows the ratio of strongly-
connected method couples to all method couples. Low
values of TCC may indicate that the cohesion of the class
is low because it is not well designed.

LCOM (Lack of Cohesion in Methods): It is a
measure about how methods of a class are related to each
other. Low cohesion means that the class implements more
than one responsibility. A change request by either a bug
or a new feature, on one of these responsibilities will result
change of that class. Lack of cohesion also influences
understandability and implies classes should probably be
split into two or more subclasses. God Classes tend to be
doing more irrelevant and complex tasks.

 CAM (Cohesion Among Methods): It is a measure
of cohesion based on parameter types of methods instead
of attributes used by them. God Classes tend to have
various unrelated responsibilities therefore they should
have methods that have different type of parameters.

3) Complexity and Size Metrics

WMC (Weighted Methods per Class): It is the
weighted sum of all class’ methods an represents the
complexity of a class. It is equal to number of methods, if
the complexity is taken as 1 for each method. More
complex classes tend to be a God Class. It is expected that
complex classes have higher change rates because of bug
fixing and refactoring activities.

LOC (Lines of Code): It is the number of all
nonempty, non-commented lines of the body of the class
and all of its methods. LOC is a measure of size and also
indirectly related to the class complexity. Since God
Classes are complex, their lines of code values tend to be
high.

NOPA (Number of Public Attributes): The number
of public attributes of the class.

NOAM (Number of Accessor Methods): The number
of getter and setter methods of the class. These methods
are used to access private or protected attributes of the
classes.

NOA (Number of Attributes): The number of
attributes of the class.

NOM (Number of Methods): The number of methods
in a class.

NOPA, NOAM and NOA metrics are related to the
number of attributes and NOM metric is related to the
number of methods of a class. These metrics can be used
to identify god classes, which are difficult to maintain
because they contain too many attributes and methods
[18].

C. Studied Software Systems

In this study the data set is extracted from the
following open source projects.

ArgoUML [9] is a long-live UML modeling project.
JFreeChart[10] is an open source drawing library.
Xerces [11] is an Apache project that includes open

source XML parser and related software.
These projects are selected since they are well-known

long-lived projects.

IV. THE GOD CLASS DETECTION APPROACH

In this study, we propose an approach for detecting the
common design defect God Class. We create decision tree
models for detecting God Classes using data about
examined software classes. For training and evaluating the
model, we prepare a database by extracting metric values
and God Class information from open source projects.

In our approach, first we extract metric values of
software classes from different open-source projects using
iPlasma [16] and Equality [12]. Before we give the details
of our detection method, we show some properties of
software metrics to explain the necessary and benefits of
the prposed method. Analysis on the metric values reveals
properties of metrics that make it difficult to work with
them to create certain rules. First observation is that the
metric values are generally power-law distribution. The
metric distributions of the Xerces 2.7 project are sperated
into two groups and they are given in Figure 5 and Figure
6. In this figures x-axis is the value of the metric and y-
axis is the number of classes with a specific metric value.
Many classes have same or similar values. Furthermore,
metrics have different intervals and various types. Some of
them are integers between [0,+∞) (such as RFC) and some
of them are floating numbers between [0, 1] (such as
WOC). Interpretation of metrics also varies in detection of
bad smells. While high values of some metrics (ATFD,
WMC) indicate design defects, in contrast low values of
some other metrics (TCC) are warning signals. Also, to
detect design defects in a software system different metrics
should be used together. To overcome these difficulties we
benefit from artificial intelligence and use the decision
tree. This method uses attributes, in our case metrics,
together to classify software classes. The model is created
in a training phase, so that certain thresholds of the metrics
do not need to be given manually or know in advance,
because they are determined and learned by the model.

A. Preparing the Database

We prepare a dataset for each software project using
information that is collected from the classes. In the
representation of data: software classes are samples,
metrics are their attributes and statuses as “God Class” or
“Normal Class” are their tags. We examine the software
classes and tag them as God Class if they include this
design defect. Defect-free classes are tagged as Normal
Class. To assign the tags to classes, we use three different
tools [16, 12, 18] as explained below.

We built dataset for each investigated project as
follows:

1) We extract software metrics of each class and record

them to the database.
2) We determine candidate classes that are possibly God

Classes using three different tools [16, 12, 18].
a) If all the three tools mark a class as a God Class

we also tag it as a God Class without a further
investigation.

b) If all the three tools cannot agree upon the status
of the class we analyze the source code manually
and decide whether the detected candidate class is
really a God Class or not.

B. Creating the Detection Model

In this study we use decision tree models to classify
software classes as God Class and Normal Class. A
decision tree is defined as a connected, acyclic, undirected
graph, with a root node, zero or more internal nodes, and
one or more leaf nodes. All nodes, except the root and the
leaves, are internal nodes. Leaves show the tag of the
objects and inner nodes include attributes and their
outgoing edges present the rules to compare the object
under test with the attributes of the train samples. The
rules to examine objects are generated at the train phase by
using train samples that are obtained from known projects.
In the detection (test) pahase, starting from the root node,
attributes of the test object are avaluated according to
conditions defined in the inner nodes. Depending on the
results of these evaluations the test object moves in the tree
and finally reaches the leaf that shows the corresponding
tag. Exemplary decision tree models that were created in
our study for different software systems are shown in
Figure 2, Figure 3 and Figure 4. In our case, leaves
(rectangles) show the tag of the tested class, namely “1”
represents God Class and “0” represents Normal Class.
The inner nodes hold class metrics that take place in the
comparison operations, and the edges show the conditions
and the branches to move.

In this study, to generate decision trees we applied the
C4.5 algorithm, which is developed by Ross Quinlan [19].
At each node of the tree, C4.5 chooses one attribute of the
data that most effectively splits the set of samples into
subsets so that the samples in each subset belon mostly to
a specific category. The attribute with the highest
normalized information gain (difference in entropy) is
chosen for splitting the samples to branches. The C4.5
algorithm then recurses on the smaller sublists [20] until

all the samples in a branch belong to the same category.
J48 is one of the implementation of this algorithm in Weka
[15]. It generates a pruned or unpruned decision tree. It
uses pruning in order to get rid of over-fitting of decision
tree, thus it creates smaller and less complex trees [14].

We used pruned version of the algorithm with 0.25
confidence factor in this empirical study. At the initial
state we give all metric values and God Class information
for all classes to the algorithm to construct the tree model.
The algorithm, iteratively, selects proper metrics and
related decision conditions (thresholds) to split the set
class samples according to the tags (God Class or not).
After iterations have been finished, the model is created in
the form of a decision tree that includes the detection
rules. Then we can use this model to predict God Classes
in the validation (test) set that has unvisited class samples.
We note that, the location of metrics in the tree and the
comparison rules are determined in the training phase
automatically and they can be adapted to different systems.
The user of the model does not need to select these
parameters.

Additionally decision tree method requires a short
running time to create models. We measure the time that is
taken to create the models on a computer that has 2.4 GHz
Intel Core i5 processor, 8 GB RAM and Mac OS X
operating system. In all experiments the models are built in
less than 0.1 seconds.

C. Validation Methods

To validate our results holdout validation method is
used in this article. It is a natural approach to split the
available data into two non-overlapping parts: one for
training and the other one for testing. The test data is held
out and not used during training. Holdout validation avoids
the overlap between training data and test data. Figure 1
shows this process.

Figure 1. Holdout validation method

D. Measurements and evaluation

To evaluate our method we measure the accuracy,
precision, recall and F-measure (F1) values that are
obtained in the experiments. The calculations are based on
the status of the results as true positive (tp), true negative
(tn), false positive (fp) and false negative (fn). The
accuracy gives the portion of correctly classified classes in
the whole data set. Precision is the number of software
classes correctly classified as “God Class” divided by the
total number of classes classified as “God Class”. The

precision can also be calculated for “Normal classes”. In
this case it will show the number of software classes
correctly classified as “Normal Class” divided by the total
number of classes classified as “Normal Class”. High
precision means that the method generates more correct
results than incorrect. Recall is the number of software
classes correctly classified as “God Class” divided by the
total number of real “God Classes”. Similarly it can also
be defined for “Normal Classes”. High recall means that
the method can detect most of the “God Classes” (or
“Normal Classes”). The F-measure (F1) enables us to
consider the precision and the recall together. It can be
interpreted as a weighted average of the precision and
recall. The equations are given below:

Actual

P
re

di
ct

ed
 1 0

1 tp fp

0 fn tn

If the validation dataset has unbalanced number of

samples for God Classes and Normal Classes, accuracy
could not be used solely to evaluate the model. In our
dataset the number of “God Class” samples is less than
“Normal Class” samples, and we aim to predict the “God
Classes”. Therefore we consider the value of precision,
recall and f-measure together to evaluate the model. For
example if our dataset had 1000 samples and only 10 of
samples were “God Class” and our model tagged all
samples as “Normal” we would reach 99% accuracy, on
the other hand God Class precision, recall and f-measure
value would be all zero.

V. EXPERIMENTAL RESULTS

We evaluate the performance and practical usability of
our approach in three different ways. First, we split one
software system’s dataset into train and test sets. Here we
want to discover, whether it is possible to train the model
with a part of a program and then detect defects in the
remaining part of the same program. Second, we use one
software system’s different releases as train and test sets.
This evaluation method is used to see if we can train the
model in earlier development phases of the program and
then use the model to detect defects in later releases. Third,
we use one software system’s dataset as train and another
software system’s dataset as test set. Here we try to train
the model using data of a program and then to apply it to
other programs to detect defects.

A. Investigating one software system

In this experiment Apache Xerces 2.7, Argo UML 2.4
and JFreeChart 0.9.21 projects are investigated. We use
the holdout validation method by splitting dataset into two
groups as train and test sets for each project. We randomly
select 60% of samples from dataset for each tag, and put

them into the train set. The remaining 40% of the dataset
constitutes the test set. We create the decision tree model
by using the train set, and then measure the success of the
model using the test set.

The Xerces project includes 786 Normal and 55 God
Classes. After splitting, train set contains 470 Normal
Classes and 35 God Classes and test set includes 316
Normal and 20 God Classes. The model that is created
after training for this project, is shown in Figure 2.

Figure 2. Decision tree model of the Xerces 2.7

When we apply the model on the test set, it detects 18
God Classes correctly. It classifies two of God Classes as
Normal Class and tags four of Normal Classes as God
Class. Precision, recall and f-measure results for the God
Class, Normal Class and their weighted averages are given
in Table I. Allthough the most important results are about
the detection of the God Classes, to show the overall
performance of the method we also give the results about
the detection of the Normal Classes. Accuracy of the
detection is 98.2% and God Class precision and recall
values are 81.8% and 90% respectively. This means that
we could find 82% of God Classes and 90% of marked
classes are really God Classes.

TABLE I. XERCES 2.7 HOLDOUT VALIDATION RESULTS

Precision Recall F-measure

God Class 0.818 0.900 0.857
Normal Class 0.994 0.987 0.990
Weighted Average 0.983 0.982 0.983

In the second experiment we run our method on the

Argo UML 0.24 project that includes 1584 Normal and 30
God Classes. After splitting the samples into two groups,
the train set contains 951 Normal Classes and 17 God
Classes and the test set includes 633 Normal and 13 God
Classes. The model that is created after training for this
project, is shown in Figure 3.

Figure 3. Decision tree model of the Argo UML 0.24

After we run our method on the test set, the results
show that the model detects 10 of 13 God Classes
correctly. The evaluation measurements are given in Table
II. Accuracy of the detection is 99.5% and God Class
precision and recall values are 100% and 76.9%
respectively. The recall value shows that the classifier did
not misclassify any Normal Class as God Class.

TABLE II. ARGOUML 0.24 HOLDOUT VALIDATION RESULTS

Precision Recall F-measure

God Class 1.000 0.769 0.870
Normal Class 0.995 1.00 0.998
Weighted Average 0.995 0.995 0.995

 We test our method also on the JFreeChart 0.9.21 project
that includes 603 Normal and 40 God Classes. In this
experiment the train set contains 363 Normal Classes and
23 God Classes and test set includes 240 Normal and 17
God Classes. The model, which is created after training for
this project, is shown in Figure 4.

Figure 4. Decision tree model of the JFreeChart 0.9.21

The model detects 17 God Classes correctly. It
classifies five Normal Classes as God Class. According to
the results in Table III, we could find 100% of God
Classes, and 77% of marked classes are really God
Classes.

TABLE III. JFREECHART 0.9.21 HOLDOUT VALIDATION RESULTS

Precision Recall F-measure

God Class 0.773 1.000 0.872
Normal Class 1.000 0.979 0.989
Weighted Average 0.985 0.981 0.982

For each software systems the decision tree creates
dynamically different models according to the training set.
After this group of experiments we can conclude that the
decision tree model can be trained with a part of a software
system and then it can be used to detect God Classes in the
remainder of the same system.

B. Investigating different versions of a software system

In this experiment we investigate two different releases
of the ArgoUML: 0.24 and 0.32. They contain 1584 and
1796 Normal Classes; 30 and 27 God Classes respectively.
We trained our model using ArgoUML 0.24 and tested it
using ArgoUML 0.32.

The results show that the model detects 22 God Class
correctly. It tags five of God Classes as Normal Class and
two of Normal Classes as God Class. Accuracy of the
detection is 99.6% and Table IV shows the other results.
We reach in detection of God Classes more than 91% and
81% success for the precision and recall results
respectively.

TABLE IV. TRAIN SET: ARGOUML 0.24, TEST SET: ARGOUML 0.32

Precision Recall F-measure

God Class 0.917 0.815 0.863
Normal Class 0.997 0.999 0.998
Weighted Average 0.996 0.996 0.992

We deduce that we can create a model with data from a

particular release and use it in the successor releases of the
software system to detect design defects. In some releases,
the detection results of the model can be investigated and
if it is necessary, the model can be retrained using data
from the current release. In that way, the model can be
adapted to the project and can generate more accurate
results in later releases.

C. Investigating different software systems

In this experiment we investigate the detection
capability of our approach if train and test software
systems are different. We train our model using Xerces 2.7
and test it with JFreeChart 0.9.21 and ArgoUML 0.32.
JFreeChart 0.9.21 contains 603 Normal and 40 God Class
samples.

After an analysis we see that the model that was
created using Xerces 2.7 finds 20 God Classes correctly,
tags seven of God Classes as Normal Class and tags one
Normal Class as God Class for the JFreeChart 0.9.21
project. On the other hand, for the ArgoUML 0.32 project,
it finds 35 God Class correctly, tags five of God Classes as
Normal Class and tags four of Normal Classes as God
Class. The results are given in Table V and Table VI for
the JFreeChart and ArgoUML projects respectively.

TABLE V. TRAIN: XERCES 2.7, TEST: JFREECHART 0.9.21

Precision Recall F-measure

God Class 0.897 0.875 0.886
Normal Class 0.992 0.993 0.993
Weighted Average 0.986 0.986 0.986

TABLE VI. TRAIN: XERCES 2.7, TEST: ARGOUML 0.32

Precision Recall F-measure

God Class 0.952 0.741 0.833
Normal Class 0.996 0.999 0.998
Weighted Average 0.995 0.996 0.995

The accuracy value is 98.6% for the JFreeChart 0.9.21
and 99.5 for the ArgoUML 0.32. The precision and recall
values are greater than 89% and 74% respectively. These
results encourage us to claim that decision tree model that
is prepared with data from a software system can be used
for detecting defects in other software systems. It is
obvious that to support this idea more experiments on
different software system should be conducted. Since, we
here aim only to show the applicability of the approach we
left additional experiments as future work.

VI. CONCLUSION

In this study, we propose the decision tree method for
detecting the design defect that is called God Class in
software systems. To validate our approach we
investigated datasets that include object-oriented metrics
of classes of open source software projects. Results from
case studies verify our methodology and show that the
God Classes in software systems can be successfully
detected using decision trees that are created and trained
with proper metrics. We validate our method in three
different aspects to show its usability. First, we use some
of classes of a program to train the model and then the
method is applied to the rest of the same program to detect
defects. Second, we create and train the decision tree with
data from an earlier release of a software system and then
use this model to detect defects in later releases of the
same system. The model can also be retrained in some
middle releases to adapt it to the characteristic of the
software system. The third validation aspect is to train and
to tests the model using totally different software systems.
These experiments also gave reasonable results.

The proposed approach can reduce the maintenance
cost by predicting the classes that are affected by God

Classes and need refactoring. Decision tree is a supervised
learning method and it selects the most significant metrics
and their thresholds to predict God Classes according to
training dataset. When we examined the models we saw
that WMC, RFC, CBO, NOA, NOPA, ATFD, TCC, CAM
were mostly selected metrics in our experiments.

 In this study we trained the model to detect God
Classes however the models can also be trained for
detecting other types of bad smells using related
metrics.As a future work, we want to apply this approach
to predict other disharmonies like Data Class,
Schizophrenic Class. In addition, to generalize the results
we need to expand the datasets by investigating different
software systems from several area and programming
languages.

VII. REFERENCES

[1] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp.
476- 493, June 1994.

[2] Bansiya, J., Davis, C., 2002: A Hierarchical Model for Object-
Oriented Design Quality Assessment. IEEE Transaction on
Software Engineering, vol. 28, no. 1, pp. 4-17, January.

[3] M. Fowler and K. Beck, "Bad Smells in Code", in Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 2000,
pp. 75-88.

[4] Marinescu, R. 2001: Detecting Design Flaws via Metrics in
Object-Oriented Systems. TOOLS (39): 173-182.

[5] Marinescu, Radu, 2002: Measurement and Quality in Object-
Oriented Design. Ph.D. Thesis, Department of Computer Science,
"Politehinca" University of Timisora.

[6] Marinescu, Radu, 2004:. Detection Strategies: Metric Based Rules
for Detecting Design Flaws. ICSM 2004: 350-359.

[7] Lanza, Michelle, Marinescu, Radu 2006: Object-Oriented Metrics
in Practice. Springer.

[8] Li, Wei. Shatnawi, Raed (2007): An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution. Journal of Systems and Software 80(7):
1120-1128.

[9] http://argouml.tigris.org/

[10] http://www.jfree.org/jfreechart/

[11] http://xerces.apache.org/index.html

[12] Erdemir, U., Tekin, U., Buzluca, F.. "E-Quality: A Graph Based
Object Oriented Software Quality Visualization Tool". In
Proceedings of the 6th IEEE International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT),
pp..6–13, Virginia, USA Sep. 2011.

[13] Lanza, M., Marinescu, R., Object-Oriented metrics in practice:
using software metrics to characterize, evaluate, and improve the
design of object-oriented systems. Springer, 2006.

[14] Drazin, S., and Montag, M., Decision Tree Analysis using Weka,
University of Miami. from
http://www.samdrazin.com/classes/een548/project2 report.pdf

[15] www.cs.waikato.ac.nz/~ml/weka/

[16] iPlasma: http://loose.upt.ro/iplasma/index.html

[17] Travassos, F. Shull, M. Fredericks, and V. R. Basili. Detecting
defects in object-oriented designs: using reading techniques to
increase software quality. In Proceedings of the 14th Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 47–56. ACM Press, 1999.

[18] Moha, N., Guéhéneuc, Y., Duchien, L., Le Meur, A., "DECOR: A
Method for the Specification and Detection of Code and Design
Smells", IEEE Transactions of Software Engineering, 2010.

[19] J. Ross Quinlan, C4.5: Programs for Machine Learning by. Morgan
Kaufmann Publishers Inc., 1993

[20] Adhatrao, K., Gaykar, A., Dhawan, A., Jha, A., and Honrao V.,
"Predicting Students’ Performance Using Id3 And C4.5
Classification Algorithms", International Journal of Data Mining &
Knowledge Management Process (IJDKP) Vol.3, No.5, September
2013

[21] B. F. Webster. Pitfalls of Object Oriented Development. M & T
Books, 1st edition, February 1995.

[22] M. Mantyla. Bad Smells in Software - a Taxonomy and an
Empirical Study. PhD thesis, Helsinki University of Technology,
2003.

[23] M. J. Munro. Product metrics for automatic identification of “bad
smell” design problems in java source-code. In Proceedings of the
11th International Software Metrics Symposium. IEEE Computer
Society Press, September 2005.

[24] Riel, A.J.. Object-Oriented Design Heuristics. Addison-Wesley,
1996.

Figure 5. Metric distributions of the Xerces 2.7 (Part 1)

Figure 6. Metric distributions of the Xerces 2.7 (Part 2)

