Detection of God Classes in Object-Oriented SoftwarUsing Decision Tree

Sinan Eski, Feza Buzluca
Computer Engineering
Istanbul Technical University
{eski, buzluca}@itu.edu.tr

Abstract—Bad smells, also known as code smells or
disharmonies are characteristics of software that my
indicate a code or design problem because of insigient
abstraction that makes software hard to evolve and
maintain, and may trigger refactoring of code. Sige these
defects reduce understandability, flexibility and eusability
of the system; adding new features, adapting to thehanges,
and finding design flaws are getting harder. In or@r to
reduce software cost, especially in the maintenance
detection of bad smells is important. One of the nsb
common bad smells is “God Class”. A class is idefigd as
God Class if it interacts with many other classesand has a
very high complexity and low cohesion. In this pape a
method that is based on decision tree is proposedrf
detecting God Classes. It is a supervised learningethod
and creates models to classify unseen samples based
training data. In this study, training data is formed as
follows: software classes are samples, metrics arheir
attributes and tags show whether the class is a Gdglass or
not. A database is prepared to train and validate ar
decision tree model, using information that is codicted from
open-source projects. The adaptable model can belitmated
during the development of a project by training it with
detection results of earlier versions so that it ca detect
defects in later versions successfully. The modehr be also
prepared to work on software systems of a specifidomain
by training the model with a data collected from sgtems in
the same domain. Empirical results of the study indate that
the decision tree method can be used successfulty detect
God Classes.

Keywords, Software Quality; Bad Smells, Disharmonies;
God Classes; Decision Tree

. INTRODUCTION

Software maintenance cost is typically more that 50
of the cost of the total software life cycle. Ddimc of bad
smells in design during software development and
maintenance is an important task in order to reduce
development time and resource cost.

Software quality assessment is an important kepfac
to determine critical parts, because high-qualiéytep of
software are less error-prone and easy to main@ainthe
other hand, more complex parts with a lower quadtsel
have the opposite situation. The low-level qualityrts
mostly have design-level defects, which show weskes
in design and present symptoms that are calledcstesdls.
Bad smells usually do not indicate bugs and theyalo

affect the program functioning; but may slow dowe t
development or increase the risk of bugs or fadlurethe

future. These parts need refactoring. At that pathe

measurement of software quality is important to o=ep
the good and bad parts of a software system.

Software design metrics are basic objects thatbean
used for the quality measurement. Metrics are the
measurement values of software entities like linfesode
or number of methods that could be extracted froorce
codes. In object-oriented software, in order toogmize
the structure of classes and the relations amamg,tthere
are also high-level metrics to express concepté s
cohesion, coupling and complexity. As object-otés
software metrics give important evidence about gfesi
quality, they can help software engineers to determ
critical low-quality parts, that should be consktefirstly
on maintenance and refactoring. Therefore, devedope
start refactoring from these low-quality parts moprove
the internal quality of their product.

It is difficult to work with metrics to create cah
rules for detecting bad smells because of theifouar
types and distributions. Also, different metricosld be
used together to create a model for quality assarssrut
it is difficult to determine the roles, weights atidesholds
of metrics in creating such a model. In this paper
propose a method for detecting the well-known baélls
called “God Class” [24], in designs of object-otish
systems by using decision tree. God classes haye h
complexity and incorporate more than one functityal
that semantically belongs elsewhere; therefore tye
negative impact on quality attibutes like maintaitigy,
reusability and understandability. The decisiore t@n
generate the rules that consist of multiple mettigs
learning the properties of the systems that aren@ed in
advance. The detection models that are created in a
decision tree form can adapt to different typesaiffware
systems if they are trained with proper data. Teer wf
the model does not need to be aware of the specific
combinations of metrics or their thresholds.

The creation of the decision tree is based on ozetd
software classes. In order to obtain the resultisvatidate
our method we analyze long-lived open source ptejec
which are in different sizes and domains. We prepar
database using these projects and save metricsvalue
classes and their actual God Class information. UAke
these data as train and test sets according te #mgects:
in the same project, among different releases fogect
and among different projects. For the first aspeet,split

data of a software system into train and test stdse we

try to find out the answer of the following questi®Vhen

we know some classes of a software system thaGade
Class or not, can we classify the rest of them? tRer
second aspect, we use data from a release of \waseft
system as train set and then data obtained fronobtte
following releases as test set; because we watistover
whether the method can be used to detect defects in
successor releases of a software system when we hav
information about defects in an earlier releasthefsame
system. For the final aspect, we use data fromerifft
software systems for the train and test sets, lsecae
want to find out whether a model that is creatddgudata
from a software system can be used to detect Gass€$

in other software systems.

In this study, we select metrics that are defime€K
suit [1], QMOOD [2] and in [13] because of theirgstle
relation to God Classes. We give all metrics, which
explained in Section 3 as parameters to the Cgdrithm
[19] that combines poroper metrics and createssitgci
tree models to find God Classes. The results shawthis
approach can be successfully used to find this cmmm
software bad smell.

The remainder of this paper is organized as follows
Related works are presented in the next sectiotadgt
and metrics that are used in empirical analysis are
presented in Section 3. Section 4 shows the propose
method and the system architecture, and Sectidotss
the case studies and obtained results. Final sectio
concludes the paper.

. RELATEDWORK

Webster [21] wrote the first book on “antipatterns”
object-oriented development; his contribution caever
conceptual, political, coding, and quality-assuganc
problems. The code smells concept was introduced by
Fowler and Beck [3], who defined 22 different kindf
smells and suggested where developers should apply
refactorings. Later, other authors like Mantyla][22
identified more smells and proposed their classiifins.

Several approaches to specify and detect smells hav
been proposed in the literature. Travassos et 1] |
introduced manual inspections and reading techsiqoe
identify code smells. Marinescu presented general
approaches to find code smells [4] and after thigkw
Marinescu et al. [5, 6, 7], presented metric-baksdction
strategies, which capture deviations from good giesi
principles. These strategies consist of combiniregrics
with set operators and comparing their values &olaite
and relative thresholds. Lanza and Marinescu iniced
the detection strategies in a book [13].

Similarly to Marinescu, Munro [23] proposed metric-
based heuristics to detect code smells; the detecti
heuristics are derived from template similar to thee
used for design patterns. He also performed anrarabi
study to justify the choice of metrics and thredsofor
detecting code smells.

Li and Shatnawi [8] work on relation between bad
smells and software bugs.

Previous studies are generally based on predefined
rules that are used to make boolean decisions etheha
class has a smell or not. In our approach we toain
model and generate decision rules using data t¢etlec
from different exemplary software systems. Foreadiéht
systems, the rules can be regenerated or adapted
dynamically. Our approach neither relies on preusfi
rules nor needs some threshold values that are rkriow
advance.

. BACKGROUND

A. God Classes

God Class is one of the most common disharmonies,
which do not satisfy identity harmony principlesariza
and Marinescu [13] describe software identity hamnas
follows. “Operations and classes should have a
harmonious size i.e., they should avoid both size
extremities. Each class should present its idefitigy, its
interface) by a set of services, which have onglsin
responsibility and which provide a unique behawata
and operations should harmoniously collaborateiwitie
class to which they semantically belong.”

A class is identified as God Class if it interagtth many
other classes, and has a very high complexity amd |
cohesion opposite to the idendity harmony principle

B. Sudied Metrics

In order to detect God Classes; coupling, cohesion
complexity and size-related metrics are selectedire of
the God Class definition. We collect 13 metricst thee
defined in CK [1] metric suite, QMOOD [2] and [13T.he
decision tree method creates the model dynamically
according to the training data by selecting thecise
combinations of metrics and their thresholds.

Studied metrics are separated and explained in the
following three groups.

1) Coupling Metrics

ATFD (Access to Foreign Data)lt is the number of
classes whose attributes are directly or indiragthchable
from the investiggated class. Classes with a W@kD
value rely strongly on data of other classes aatidan be
the sign of the God Class defect.

CBO (Coupling Between Object Classes)it is the
number of classes that a class is coupled to.chlsulated
by counting other classes whose attributes or nastlaoe
used by a class, plus those that use the attriboites
methods of the given class. Inheritance relations a
excluded. As a measure of coupling CBO metric lsted
with reusability and testability of the class. Ma®upling
means that the code becomes more difficult to ramint
because changes in other classes can also cauggesha
that class. God Classes tend to be having more
connectivity to other classes.

RFC (Response For a Class)t is the number of the
methods that can be potentially invoked in respdosa
public message received by an object of a partialiess.

If the number of methods that can be invoked froclaas
is high, it is more complex and highly coupled tome
methods. God Classes tend to invoke a lot of meathod
from other classes.

DIT (Depth of Inheritance Tree): It is the maximum
length from the class being measured to the roahef
inheritance tree. If it is not extended from angssl this
value is 0. If there are more than one ancestordbrit is
the longest way to the root. A class that is lotateeply
in the inheritance hierarchy inherits a lot of pdpes
from many ancestor classes. Inheritance is alsdhano
type of coupling. Deeper trees constitute greatsignh
complexity, since more methods and classes ardviedo
It is difficult to to predict its behavior, desigmd maintain
such a class; therefore it is likely to contairefedt.

2) Cohesion Metrics

TCC (Tight Class Cohesion): Methods that use at
least one attribute of class in common are definsd
strongly-connected. TCC shows the ratio of strongly
connected method couples to all method couples. Low
values of TCC may indicate that the cohesion ofdhss
is low because it is not well designed.

LCOM (Lack of Cohesion in Methods): It is a
measure about how methods of a class are relatedcto
other. Low cohesion means that the class implenmaats
than one responsibility. A change request by eithbug
or a new feature, on one of these responsibiltiégesult
change of that class. Lack of cohesion also infleen
understandability and implies classes should prigbhé
split into two or more subclasses. God Classes ter
doing more irrelevant and complex tasks.

CAM (Cohesion Among Methods):It is a measure
of cohesion based on parameter types of methotksachs
of attributes used by them. God Classes tend te hav
various unrelated responsibilities therefore théputd
have methods that have different type of parameters

3) Complexity and Sze Metrics

WMC (Weighted Methods per Class): It is the
weighted sum of all class’ methods an represengs th
complexity of a class. It is equal to number of moefs, if
the complexity is taken as 1 for each method. More
complex classes tend to be a God Class. It is ¢egehat
complex classes have higher change rates becaumgof
fixing and refactoring activities.

LOC (Lines of Code): It is the number of all
nonempty, non-commented lines of the body of tles<l
and all of its methods. LOC is a measure of siz aso
indirectly related to the class complexity. SincedG
Classes are complex, their lines of code values terbe
high.

NOPA (Number of Public Attributes): The number
of public attributes of the class.

NOAM (Number of Accessor Methods):The number
of getter and setter methods of the class. Theshooe
are used to access private or protected attribofehe
classes.

NOA (Number of Attributes): The number of
attributes of the class.

NOM (Number of Methods): The number of methods
in a class.

NOPA, NOAM and NOA metrics are related to the
number of attributes and NOM metric is related he t
number of methods of a class. These metrics camsbé
to identify god classes, which are difficult to miin
because they contain too many attributes and method
[18].

C. Sudied Software Systems

In this study the data set is extracted from the
following open source projects.

ArgoUML [9] is a long-live UML modeling project.

JFreeChart[10] is an open source drawing library.

Xerces [11] is an Apache project that includes open
source XML parser and related software.

These projects are selected since they are welldkno
long-lived projects.

IV. THE GoD CLASS DETECTIONAPPROACH

In this study, we propose an approach for detedting
common design defect God Class. We create dedisen
models for detecting God Classes using data about
examined software classes. For training and evatyste
model, we prepare a database by extracting medtices
and God Class information from open source projects

In our approach, first we extract metric values of
software classes from different open-source prsjasing
iPlasma [16] and Equality [12]. Before we give thetails
of our detection method, we show some properties of
software metrics to explain the necessary and hieraff
the prposed method. Analysis on the metric valegeals
properties of metrics that make it difficult to Wwowith
them to create certain rules. First observatiothé the
metric values are generally power-law distributidme
metric distributions of the Xerces 2.7 project aperated
into two groups and they are given in Figure 5 BRigire
6. In this figures x-axis is the value of the metnd y-
axis is the number of classes with a specific retailue.
Many classes have same or similar values. Furthermo
metrics have different intervals and various tyfgsme of
them are integers between [@}(such as RFC) and some
of them are floating numbers between [0, 1] (sush a
WOC). Interpretation of metrics also varies in détn of
bad smells. While high values of some metrics (ATFD
WMC) indicate design defects, in contrast low valwé
some other metrics (TCC) are warning signals. Ateo
detect design defects in a software system diffaretrics
should be used together. To overcome these diffisuive
benefit from artificial intelligence and use thecid@®n
tree. This method uses attributes, in our case icaetr
together to classify software classes. The modetdated
in a training phase, so that certain thresholdb@imetrics
do not need to be given manually or know in advance
because they are determined and learned by thelmode

A. Preparing the Database

We prepare a dataset for each software projecgusin
information that is collected from the classes. the
representation of data: software classes are sample
metrics are their attributes and statuses as “GadsCor
“Normal Class” are their tags. We examine the safew
classes and tag them as God Class if they inclbie t
design defect. Defect-free classes are tagged asallo
Class. To assign the tags to classes, we usedtifeent
tools [16, 12, 18] as explained below.

We built dataset for each investigated project as
follows:

1) We extract software metrics of each class and decor
them to the database.
2) We determine candidate classes that are possildy Go

Classes using three different tools [16, 12, 18].

a) If all the three tools mark a class as a God Class
we also tag it as a God Class without a further
investigation.

b) If all the three tools cannot agree upon the status
of the class we analyze the source code manually

and decide whether the detected candidate class is

really a God Class or not.

B. Creating the Detection Model
In this study we use decision tree models to dlassi

software classes as God Class and Normal Class. A

decision tree is defined as a connected, acydtidirected
graph, with a root node, zero or more internal sodad
one or more leaf nodes. All nodes, except the aoadtthe
leaves, are internal nodes. Leaves show the tatheof
objects and inner nodes include attributes andr thei
outgoing edges present the rules to compare thecibobj
under test with the attributes of the train samplBse
rules to examine objects are generated at thefrase by
using train samples that are obtained from knovajepts.
In the detection (test) pahase, starting from ta# node,
attributes of the test object are avaluated acngrdo
conditions defined in the inner nodes. Dependinghe
results of these evaluations the test object movie tree
and finally reaches the leaf that shows the cooeding
tag. Exemplary decision tree models that were edeat
our study for different software systems are shawn
Figure 2, Figure 3 and Figure 4. In our case, lsave
(rectangles) show the tag of the tested class, Iyathe
represents God Class and “0” represents NormalsClas
The inner nodes hold class metrics that take pladbe
comparison operations, and the edges show the toomli
and the branches to move.

In this study, to generate decision trees we agyilie
C4.5 algorithm, which is developed by Ross Quiril].
At each node of the tree, C4.5 chooses one attribfuthe
data that most effectively splits the set of samplgo
subsets so that the samples in each subset belsthy rtm
a specific category. The attribute with the highest
normalized information gain (difference in entropig)
chosen for splitting the samples to branches. Thes C
algorithm then recurses on the smaller sublist$ {21l

all the samples in a branch belong to the sameyaate
J48 is one of the implementation of this algoritinnvWeka
[15]. It generates a pruned or unpruned decisien. tit
uses pruning in order to get rid of over-fitting ddcision
tree, thus it creates smaller and less comples {fe§.

We used pruned version of the algorithm with 0.25
confidence factor in this empirical study. At thsitial
state we give all metric values and God Class médion
for all classes to the algorithm to construct tlee tmodel.
The algorithm, iteratively, selects proper metriaad
related decision conditions (thresholds) to spii¢ tset
class samples according to the tags (God Claso®r n
After iterations have been finished, the modelréated in
the form of a decision tree that includes the ditrc
rules. Then we can use this model to predict Gab<&s
in the validation (test) set that has unvisiteg€lsamples.
We note that, the location of metrics in the tred ¢he
comparison rules are determined in the trainingspha
automatically and they can be adapted to diffesgstems.
The user of the model does not need to select these
parameters.

Additionally decision tree method requires a short
running time to create models. We measure the ttiaieis
taken to create the models on a computer that HaGaz
Intel Core i5 processor, 8 GB RAM and Mac OS X
operating system. In all experiments the modeldailein
less than 0.1 seconds.

C. Validation Methods

To validate our results holdout validation methad i
used in this article. It is a natural approach péit ghe
available data into two non-overlapping parts: doe
training and the other one for testing. The tesh éaheld
out and not used during training. Holdout validat&voids
the overlap between training data and test daturé&il
shows this process.

Train
Set

Analyze

Figure 1. Holdout validation method

D. Measurements and evaluation

To evaluate our method we measure the accuracy,
precision, recall and F-measurei)(Fvalues that are
obtained in the experiments. The calculationdased on
the status of the results as true positive (tplg tmegative
(tn), false positive (fp) and false negative (fAjhe
accuracy gives the portion of correctly classifidasses in
the whole data set. Precision is the number ofnsoé
classes correctly classified as “God Class” divibgcthe
total number of classes classified as “God Cla3sie

precision can also be calculated for “Normal cla&sk
this case it will show the number of software absss
correctly classified as “Normal Class” divided e ttotal
number of classes classified as “Normal Class”. hHig
precision means that the method generates morectorr
results than incorrect. Recall is the number otvemie
classes correctly classified as “God Class” divitlgdhe
total number of real “God Classes”. Similarly itncalso
be defined for “Normal Classes”. High recall meamast
the method can detect most of the “God Classes” (or
“Normal Classes”). The F-measureilFenables us to
consider the precision and the recall togethecah be
interpreted as a weighted average of the precisioch
recall. The equations are given below:

tp+tn
Accuracy = ﬁ
Actual p:'n+ pEjn
. D
Precision =
3 10 tp+ fp
2 1 tp f t
3 PP Recall = P
S 0 fn tn tp+ fn

precision - recall

" precision + recall
If the validation dataset has unbalanced number of

samples for God Classes and Normal Classes, agcurac
could not be used solely to evaluate the modeloun
dataset the number of “God Class” samples is leas t
“Normal Class” samples, and we aim to predict tGed
Classes”. Therefore we consider the value of piggtis
recall and f-measure together to evaluate the mddawl
example if our dataset had 1000 samples and onlgf10
samples were “God Class” and our model tagged all
samples as “Normal” we would reach 99% accuracy, on
the other hand God Class precision, recall and dsme
value would be all zero.

1:1 = 2

V. EXPERIMENTALRESULTS

We evaluate the performance and practical usaluifity
our approach in three different ways. First, wetgmhe
software system’s dataset into train and test stdre we
want to discover, whether it is possible to trdia todel
with a part of a program and then detect defectthén
remaining part of the same program. Second, weonse
software system’s different releases as train astl dets.
This evaluation method is used to see if we cain ttze
model in earlier development phases of the progaach
then use the model to detect defects in later sekedr hird,
we use one software system’s dataset as train reottiex
software system’s dataset as test set. Here wi tinain
the model using data of a program and then to aippty
other programs to detect defects.

A. Investigating one software system

In this experiment Apache Xerces 2.7, Argo UML 2.4
and JFreeChart 0.9.21 projects are investigated.ugée
the holdout validation method by splitting dataséd two
groups as train and test sets for each projecttaf@omly
select 60% of samples from dataset for each tady,pan

them into the train set. The remaining 40% of théadet
constitutes the test set. We create the decisemrtrodel
by using the train set, and then measure the ssicdehe
model using the test set.

The Xerces project includes 786 Normal and 55 God
Classes. After splitting, train set contains 470rriNal
Classes and 35 God Classes and test set includes 31
Normal and 20 God Classes. The model that is aeate
after training for this project is shown in Figite

-
S o @
5

104
>104,
<:

; >Dl?

<z0.17

D
”“Eé

<= 105 >1us

Figure 2. Decision tree model of the Xerces 2.7

When we apply the model on the test set, it detb®ts
God Classes correctly. It classifies two of GodsG&s as
Normal Class and tags four of Normal Classes as God
Class. Precision, recall and f-measure resultghferGod
Class, Normal Class and their weighted averagegieee
in Table I. Allthough the most important resulte about
the detection of the God Classes, to show the dvera
performance of the method we also give the reslimut
the detection of the Normal Classes. Accuracy @& th
detection is 98.2% and God Class precision andllreca
values are 81.8% and 90% respectively. This m#aats
we could find 82% of God Classes and 90% of marked
classes are really God Classes.

TABLE I. XERCES2.7HOLDOUT VALIDATION RESULTS
Precision Recall F-measure
God Class 0.81¢ 0.90C 0.857
Normal Class 0.9¢4 0.9¢&7 0.€90
Weighted Average 0.9€3 0.€82 0.9¢€3

In the second experiment we run our method on the
Argo UML 0.24 project that includes 1584 Normal &l
God Classes. After splitting the samples into twougs,
the train set contains 951 Normal Classes and 1d Go
Classes and the test set includes 633 Normal ar@doti3
Classes. The model that is created after trainamgtHis
project, is shown in Figure 3.

R
é

@
@

Figure 3. Decision tree model of the Argo UML 0.24

After we run our method on the test set, the result
show that the model detects 10 of 13 God Classes
correctly. The evaluation measurements are giverabie
II. Accuracy of the detection is 99.5% and GodsGla
precision and recall values are 100% and 76.9%
respectively. The recall value shows that thestfies did
not misclassify any Normal Class as God Class.

TABLE 1. ARGOUML 0.24HOLDOUT VALIDATION RESULTS
Precision Recall F-measure
God Class 1.00C 0.76¢ 0.€70
Normal Class 0.9¢5 1.0C 0.€98
Weighted Average 0.€95 0.295 0.€95

We test our method also on the JFreeChart 0.9@&qh
that includes 603 Normal and 40 God Classes. Ia thi
experiment the train set contains 363 Normal Ckssel
23 God Classes and test set includes 240 Normall@nd
God Classes. The model, which is created aftaritrgifor
this project, is shown in Figure 4.

<=45

Figure 4. Decision tree model of the JFreeChart 0.9.21

The model detects 17 God Classes correctly. It
classifies five Normal Classes as God Class. Adagrtb
the results in Table Ill, we could find 100% of God
Classes, and 77% of marked classes are really God
Classes.

TABLE III. JFREECHART 0.9.21HOLDOUT VALIDATION RESULTS
Precision Recall F-measure
God Class 0.77:< 1.00C 0.672
Normal Class 1.00C 0.€7¢ 0.€89
Weighted Average 0.985 0.¢81 0.9€2

For each software systems the decision tree creates
dynamically different models according to the tiagnset.
After this group of experiments we can concludd tha
decision tree model can be trained with a partsdfaware
system and then it can be used to detect God Glassiee
remainder of the same system.

B. Investigating different versions of a software system

In this experiment we investigate two differenesses
of the ArgoUML: 0.24 and 0.32. They contain 15841 an
1796 Normal Classes; 30 and 27 God Classes regplgcti
We trained our model using ArgoUML 0.24 and tested
using ArgoUML 0.32.

The results show that the model detects 22 GodsClas
correctly. It tags five of God Classes as NormalsSland
two of Normal Classes as God Class. Accuracy of the
detection is 99.6% and Table IV shows the otheultgs
We reach in detection of God Classes more than &186

81% success for the precision and recall results

respectively.

TABLE IV. TRAIN SET: ARGOUML 0.24,TESTSET: ARGOUML 0.32
Precision Recall F-measure

God Clas: 0.917 0.81& 0.863

Normal Class 0.9¢<7 0.99 0.9¢8

Weighted Average 0.9¢6 0.9%6 0.9€2

We deduce that we can create a model with data &rom
particular release and use it in the successcaseteof the
software system to detect design defects. In sahases,
the detection results of the model can be investiand
if it is necessary, the model can be retrained qusiata
from the current release. In that way, the model be
adapted to the project and can generate more decura
results in later releases.

C. Investigating different software systems

In this experiment we investigate the detection
capability of our approach if train and test softva
systems are different. We train our model usingc¥er2.7
and test it with JFreeChart 0.9.21 and ArgoUML 0.32
JFreeChart 0.9.21 contains 603 Normal and 40 GadsCl
samples.

After an analysis we see that the model that was
created using Xerces 2.7 finds 20 God Classesathyrre
tags seven of God Classes as Normal Class anditegs
Normal Class as God Class for the JFreeChart 0.9.21
project. On the other hand, for the ArgoUML 0.32jpct,
it finds 35 God Class correctly, tags five of Gdds3es as
Normal Class and tags four of Normal Classes as God
Class. The results are given in Table V and Tahlléo¥
the JFreeChart and ArgoUML projects respectively.

TABLE V. TRAIN: XERCES2.7, TEST. JFREECHART 0.9.21
Precision Recall F-measure

God Class 0.897 0.875 0.886

Normal Class 0.99: 0.993 0.993

Weighted Average 0.98¢ 0.986 _ 0.986

TABLE VI. TRAIN: XERCES2.7, TEST. ARGOUML 0.32
Precision Recall F-measure
God Class 0.952 0.741 0.83:
Normal Class 0.996 0.99¢ 0.99¢
Weighted Average 0.995 0.99¢ 0.99¢

The accuracy value is 98.6% for the JFreeChar2D.9.
and 99.5 for the ArgoUML 0.32. The precision andatk
values are greater than 89% and 74% respectivilgsa
results encourage us to claim that decision tredefnihat
is prepared with data from a software system candeel
for detecting defects in other software systemsislt
obvious that to support this idea more experimenis
different software system should be conducted. &Sine
here aim only to show the applicability of the aggmh we
left additional experiments as future work.

VI. CONCLUSION

In this study, we propose the decision tree metbod
detecting the design defect that is called God <las
software systems. To validate our approach we
investigated datasets that include object-oriemedrics
of classes of open source software projects. Refom
case studies verify our methodology and show that t
God Classes in software systems can be successfully
detected using decision trees that are createdraimbd
with proper metrics. We validate our method in ¢hre
different aspects to show its usability. First, use some
of classes of a program to train the model and then
method is applied to the rest of the same progoadetect
defects. Second, we create and train the decigtenviith
data from an earlier release of a software systeantlaen
use this model to detect defects in later releasethe
same system. The model can also be retrained ire som
middle releases to adapt it to the characteristidhe
software system. The third validation aspect igam and
to tests the model using totally different softwaystems.
These experiments also gave reasonable results.

The proposed approach can reduce the maintenance
cost by predicting the classes that are affectedGbd

Classes and need refactoring. Decision tree ipargised
learning method and it selects the most significaetrics
and their thresholds to predict God Classes aaqugrth
training dataset. When we examined the modelsame s
that WMC, RFC, CBO, NOA, NOPA, ATFD, TCC, CAM
were mostly selected metrics in our experiments.

In this study we trained the model to detect God
Classes however the models can also be trained for
detecting other types of bad smells using related
metrics.As a future work, we want to apply this r@agh
to predict other disharmonies like Data Class,
Schizophrenic Class. In addition, to generalizergsults
we need to expand the datasets by investigatirfgrelift
software systems from several area and programming
languages.

VII.

[1] S. Chidamber and C. Kemerer, “A Metrics Suite fobjeat-
Oriented Design,” IEEE Trans. Software Eng., vdl, 8o. 6, pp.
476- 493, June 1994.

[2] Bansiya, J., Davis, C., 2002: A Hierarchical Modiel Object-
Oriented Design Quality Assessment. IEEE Transactmn
Software Engineering, vol. 28, no. 1, pp. 4-17 uday.

REFERENCES

[3] M. Fowler and K. Beck, "Bad Smells in Code", in &dbring:
Improving the Design of Existing Code, Addison-Véssl2000,
pp. 75-88.

[4] Marinescu, R. 2001: Detecting Design Flaws via rMstin
Object-Oriented Systems. TOOLS (39): 173-182.

[5] Marinescu, Radu, 2002: Measurement and Quality bje€-
Oriented Design. Ph.D. Thesis, Department of Coemp8tience,
"Politehinca" University of Timisora.

[6] Marinescu, Radu, 2004:. Detection Strategies: Md&edsed Rules
for Detecting Design Flaws. ICSM 2004: 350-359.

[7] Lanza, Michelle, Marinescu, Radu 2006: Object-GadnMetrics
in Practice. Springer.

[8] Li, Wei. Shatnawi, Raed (2007): An empirical stuofythe bad
smells and class error probability in the postasée object-
oriented system evolution. Journal of Systems asftiv@re 80(7):
1120-1128.

[9] http://argouml.tigris.org/
(10]
(11]
(12]

http://www.jfree.org/jfreechart/
http://xerces.apache.org/index.html

Erdemir, U., Tekin, U., Buzluca, F.. "E-Quality: Graph Based
Object Oriented Software Quality Visualization Toolln

Proceedings of the 6th I|EEE International Workshop

Visualizing Software for Understanding and Analy@##SSOFT),

pp..6—13, Virginia, USA Sep. 2011.

[13] Lanza, M., Marinescu, R., Object-Oriented metrinspractice:
using software metrics to characterize, evaluatd, improve the
design of object-oriented systems. Springer, 2006.

[14] Drazin, S., and Montag, M., Decision Tree Analyssing Weka,
University of Miami. from
http://www.samdrazin.com/classes/een548/projeqi@rigpdf

[15] www.cs.waikato.ac.nz/~ml/weka/

[16] iPlasma: http://loose.upt.ro/iplasma/index.html

[17]

Travassos, F. Shull, M. Fredericks, and V. R. BaBiktecting
defects in object-oriented designs: using readichriques to
increase software quality. In Proceedings of thth Xonference
on Object-Oriented Programming, Systems, Languages]
Applications, pages 47-56. ACM Press, 1999.

(21]

(22]

B. F. Webster. Pitfalls of Object Oriented Develgmn M & T
Books, 1st edition, February 1995.

M. Mantyla. Bad Smells in Software - a Taxonomy asal
Empirical Study. PhD thesis, Helsinki University ®&chnology,
2003.

[18] Moha, N., Guéhéneuc, Y., Duchien, L., Le Meur, "/RECOR: A . . - ;
Method for the Specification and Detection of Ceuel Design [23] M. J. Munro. Product metrics for automatic idextfion of “bad
Smells", IEEE Transactions of Software Engineer2@j,0. smell” design problems in java source-code. In Bedings of the

[19] J. Ross Quinlan, C4.5: Programs for Machine Learbin Morgan 11th International Software Metrics Symposium. IEEBmputer

: g g g 9 Society Press, September 2005.
Kaufmann Publishers Inc., 1993

[20] Adhatrao, K., Gaykar, A., Dhawan, A., Jha, A., atidnrao V., [24] Riel, A.J.. Object-Oriented Design Heuristics. Alii-Wesley,

"Predicting Students’ Performance Using Id3 And 5C4. 1996.

Classification Algorithms", International Journdi@ata Mining &

Knowledge Management Process (IJDKP) Vol.3, Noept&mber

2013
ATFD WmMC TCC NOAM

_ 4b4 _
170
B3 64
-|'I-.M —'_h“ T - %fr_
SSI.S I?SI 1] 40‘?.5 815I a 0!5 1I a 15‘.5 33I

NOPA CBO DIT

4862042202001 0010d
T i

481

12.5 25 0 28 56

0

Figure 5. Metric distributions of the Xerces 2.7 (Part 1)

LOCC NOA NOM
8875544501 23301 onoo0d —l_h—\‘ £l 12310012 00200101
T 1 T 1 T 1
1 2069.5 4138 0 80.5 161 || o 2.5 125
LCOM RFC CAM
522 - 174
17 445 116
T
61
54
g5 101
63
10
22
15
14 £ 37700t onttoo2eoate
T 1 T 1 r T
0 0.67 133 0 504 1008 || 002 0.5 1

Figure 6. Metric distributions of the Xerces 2.7 (Part 2)

