Hoş Geldiniz, Misafir . Oturum Aç . English
Neredeyim: Ninova / Dersler / Fen Bilimleri Enstitüsü / END 566E / Dersin Bilgileri
 

Dersin Bilgileri

Dersin Adı
Türkçe Endüstriyel Veri Analizi
İngilizce Industrial Data Analytics
Dersin Kodu
END 566E Kredi Ders
(saat/hafta)
Uygulama
(saat/hafta)
Labratuvar
(saat/hafta)
Dönem -
3 3 2 1
Dersin Dili İngilizce
Dersin Koordinatörü Nizamettin Bayyurt
Nizamettin Bayyurt
Nizamettin Bayyurt
Dersin Amaçları To discuss data analysis methods
Dersin Tanımı This course is on data analytics techniques for both manufacturing and service enterprises. The course is designed for graduate students. This course will cover some important and popular data analysis and decision making techniques such as regression, classification, clustering, and validation and testing. Although some theoretical aspects of these techniques will be discussed, the emphasis will be on how to apply and integrate these techniques for solving engineering problems in manufacturing and service organizations.
Dersin Çıktıları • Understand topics of data analytics methods.
• Model problems statistically and find appropriate solutions.
• Tackle regression, classification and clustering methods
Önkoşullar
Gereken Olanaklar
Diğer
Ders Kitabı o James G., Witten, D., Hastie T., and Tibshirani, R., An Introduction to Statistical Learning, Springer, 2013

o Course slides and other materials
Diğer Referanslar o Tan, P.N., Steinbach, M. and Kumar V., Introduction to Data Mining, Pearson, 2006
o Ethem Alpaydın, Introduction to Machine Learning, The MIT Press, Cambridge, Massachusetts, London, England, 2010.
 
 
Dersler . Yardım . Hakkında
Ninova, İTÜ Bilgi İşlem Daire Başkanlığı ürünüdür. © 2025