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Three Steps to Chaos-Part 
11: A Chua’s Circuit Primer 

Michael Peter Kennedy 

Abstract-Linear system theory provides an inadequate char- 
acterization of sustained oscillation in nature. In this two-part 
exposition of oscillation in piecewise-linear dynamical systems, we 
guide the reader from linear concepts and simple harmonic mo- 
tion to nonlinear concepts and chaos. By means of three worked 
examples, we bridge the gap from the familiar parallel RLC 
network to exotic nonlinear dynamical phenomena in Chua’s 
circuit. Our goal is to stimulate the reader to think deeply about 
the fundamental nature of oscillation and to develop intuition 
into the chaos-producing mechanisms of nonlinear dynamics. 
In order to exhibit chaos, an autonomous circuit consisting of 
resistors, capacitors, and inductors must contain (1) at least 
one nonlinear element, (2) at least one locally active resistor, 
and (3) at least three energy-storage elements. Chua’s circuit 
is the simplest electronic circuit that satisfies these criteria. In 
addition, this remarkable circuit is the only physical system for 
which the presence of chaos has been proved mathematically. The 
circuit is readily constructed at low cost using standard electronic 
components and exhibits a rich variety of bifurcations and chaos. 

In Part I of this two-part paper, we plot the evolution of our 
understanding of oscillation from linear concepts and the parallel 
RLC resonant circuit to piecewise-linear circuits and Chua’s 
circuit. We illustrate by theory, simulation, and laboratory ex- 
periment the concepts of equilibria, stability, local and global 
behavior, bifurcations, and steady-state solutions. In Part 11, we 
study bifurcations and chaos in a robust practical implementation 
of Chua’s circuit. 

I. INTRODUCTION 
Chaos is characterized by a stretching and folding mecha- 

nism; nearby trajectories of a dynamical system are repeatedly 
pulled apart exponentially and folded back together. In Part I 
of this tutorial paper, we saw that the steady-state solution 
of a second-order circuit can be either a DC equilibrium 
point or a limit cycle; chaos is not possible. Nevertheless, 
our observations of some simple two-dimensional circuits 
suggest how one might create the required stretching and 
folding mechanism. We noted how two adjacent trajectories 
are separated exponentially along an eigenplane by a pair 
of unstable complex eigenvalues. This mechanism can be 
exploited to provide stretching; folding may be accomplished 
with a third dimension and a nonlinearity. 

Consider a third-order autonomous circuit described by 

X = F(X), X(0) = Xo. (1) 

Shilnikov’s theorem [l], [2 ] ,  states that if an equilibrium point 
XQ of this circuit has a pair of stable complex conjugate 
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Fig 1 Stretching and folding mechanism of chaos generation close to a 
homochnic orbit in a three-reglon piecewise-linear vector field A trajectory 
spirals away from P- along the eigenplane E C ( P _ )  until it enters the Do 
region, where it is folded back into D-1 and returns to the unstable eigenplane 
Er(P-)  close to P- 

eigenvalues (T f jw (a < O, w # O) and an unstable 
real eigenvalue y where 101 < 171, and the vector field 
F(X) has a homoclinic orbit’ through XQ,  then there is a 
perturbation F’ of F (which may be obtained by changing one 
or more parameters of the system) such that F‘ has traversal 
homoclinic orbits and horseshoes.’ The presence of transversal 
homoclinic orbits implies the existence of infinitely many 
unstable periodic orbits of arbitrarily long period3 as well 
as complicated bounded nonperiodic solutions of (1) called 
chaotic trajectories. 

Although we have stated it for the case (T < 0,y  > 0, 
Shilnikov’s theorem also applies when the equilibrium point 
has an unstable pair of complex conjugate eigenvalues and a 
stable real eigenvalue. In that case, it is somewhat easier to 
visualize the stretching and folding of trajectories close to a 
homoclinic orbit. 

Consider the trajectory of a three-region piecewise-linear 
vector field shown in Fig. 1. We assume that the equilibrium 
point P- has a stable real eigenvalue y1 (whose eigen- 
vector is E’(P-)) and an unstable complex conjugate pair 
of eigenvalues o1 f j q ,  the real and imaginary parts of 

’ A homoclinic orbit is the union of an equilibrium point E and a trajectory 
7 that approaches E as t + CO and as t + -cc [l] ,  [3]. Clearly, E is stable 
in the direction along which 7 approaches € as t + CO and unstable in the 
direction along which 7 approaches € as t + -CO; an equilibrium point that 
is stable in one direction and unstable in another is called a saddle. 

’The details of transversal homoclinic orbits and horseshoes are beyond 
the scope of this paper; we refer the reader to [l]  for a rigorous treatment of 
these topics. 

3Well-behaved periodic motion with any desired period can be obtained 
from a chaotic system by stabilizing an unstable periodic orbit of the desired 
length [4]. 
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Fig. 2. Chua's circuit consists of a linear inductor L ,  two linear capacitors 
(Ca. CI ), a linear resistor R, and a voltage-controlled nonlinear resistor YR. 

whose eigenvectors span the plane E'(P-) 151, as shown. 
A trajectory originating from a point XO on E"(P-) spirals 
away from the equilibrium point along Ec(P-)  until it enters 
the DO region, where it is folded back into D-l. Upon 
reentering D-1, the trajectory is pulled toward P- roughly 
in the direction of the real eigenvector E T ( P - ) ,  as shown. 

Now imagine what would happen if the trajectory entering 
D-1 from DO were in precisely the direction E'(P-). Such 
a trajectory would follow E'(P-) toward P-, reaching the 
equilibrium point asymptotically as t + 30. Similarly, if we 
were to follow this trajectory backward in time though DO 
and back onto Ec(P-)  in D-1, it would then spiral toward 
P-, reaching it asymptotically as t -+ -30. The trajectory 
thus formed would be a homoclinic orbit, reaching the same 
equilibrium point P- asymptotically in forward and reverse 
time. 

While the homoclinic orbit itself is not structurally stable, 
and therefore cannot be observed experimentally, it is indica- 
tive of complicated dynamical behavior nearby [l]. In this 
example, we see that a trajectory lying close to the postulated 
homoclinic orbit exhibits similar qualitative behavior: it spirals 
away from P- along the unstable complex plane E'(P-), is 
folded in Do, reenters D-l above E"(P-),  and is pulled back 
toward E"(P-) only to be spun away from P- once more. 
Thus, two trajectories starting from distinct initial states close 
to P- on E"(P-) are stretched apart exponentially along the 
unstable eigenplane before being folded in D1 and reinjected 
close to P-. This recurrent stretching and folding continues 
ad injnitum, producing a chaotic steady-state solution. 

The Genesis of Chua 's Circuit 

While on a visit to Japan in 1983, having witnessed a futile 
attempt at producing chaos in an electrical analog of Lorenz's 
equations, Leon Chua was prompted to develop a chaotic 
electronic circuit. He realized that chaos could be produced in 
a piecewise-linear circuit if it possessed at least two unstable 
equilibrium points-one to provide stretching, and the other to 
fold trajectories. With this insight, he systematically identified 
those third-order piecewise-linear circuits containing a single 
voltage-controlled nonlinear resistor that could produce chaos. 
Specifying that the driving-point (DP) characteristic of the 
voltage-controlled nonlinear resistor NE should be chosen to 
yield at least two unstable equilibrium points, he invented the 
circuit shown in Fig. 2. 

Let the nonlinear resistor N R  in Chua's circuit have a 
piecewise-linear DP characteristic as shown in Fig. 3.  Imagine 
that the values of the parameters are chosen such that the 
circuit possesses three equilibrium points (one at the origin 
with locally negative slope or conductance G,, and two in the 
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Fig. 3. The driving-point characteristic of the nonlinear resistor l V ~  in 
Chua's circuit has breakpoints at f E  and slopes G, and Go in the inner 
and outer regions, respectively. 

outer regions with locally negative conductance GI,) and that 
all three equilibrium points are unstable. Associated with each 
equilibrium point are three eigenvalues. We assume that the 
equilibrium point at the origin has an unstable real eigenvalue 
and a stable pair of complex conjugate eigenvalues; we saw in 
Section VI of Part I that this is possible. In addition, suppose 
that the outer equilibrium point P- has a stable real eigenvalue 
and an unstable complex pair. Two trajectories starting close 
together on the eigenplane in the outer region would be 
stretched apart as they spiralled away from the equilibrium 
point. If they could be folded back by the dynamics in the 
inner region and reinjected toward P- along the stable real 
eigenvector, a homoclinic orbit would be produced, and chaos 
would result. 

Soon after its conception, the rich dynamical behavior of 
Chua's circuit was confirmed by computer simulation [6] and 
experiment [7]. Since then, there has been an intensive effort 
to understand every aspect of the dynamics of this circuit 
with a view to developing it as a paradigm for learning, 
understanding, and teaching about nonlinear dynamics and 
chaos. 

That the circuit does in fact exhibit chaos in the sense 
of Shilnikov was proved by Chua et al. in 1986 121. More 
recently, by adding a linear resistor in series with the inductor, 
the circuit has been generalized to the canonical Chua's 
oscillator 181. This circuit is canonical in the sense that 
every continuous three-dimensional odd-symmetric piecewise- 
linear vector field may be mapped onto the circuit. The 
circuit can thus exhibit every dynamical behavior known to be 
possible in a system described by a continuous odd-symmetric 
three-region piecewise-linear vector field. With the appropriate 
choice of parameters, the circuit can be made to follow the 
classic period-doubling, intermittency, and torus breakdown 
routes to chaos. For a comprehensive bibliography of papers 
on Chua's circuit, we refer the reader to Chua's historical 
review paper [9]. 

11. CHUA'S CIRCUIT 

In Part I of this two-part paper, we plotted (with hindsight) 
the evolution of Chua's circuit from the classic parallel RLC 
resonant circuit. From periodic motion and two-dimensional 
dynamics, we learned about piecewise-linear analysis and 
three-dimensional dynamics. In Part 11, we study in detail 
the geometry and state-space dynamics of Chua's circuit. We 
concentrate on a particular set of parameters and behaviors 
which are readily reproducible by simulation and experiment. 



KENNEDY: THREE STEPS TO CHAOS-PART I1 659 

In order to produce at least mo unstable equilibrium points 
without sacrificing the benefits of piecewise-linear analysis, we 
specify a piecewise-linear DP characteristic for the nonlinear 
resistor NR, as shown in Fig. 3. This characteristic is defined 
analytically as follows: 

IR  = 
GbvR+(Gb-G,)E if VR < -E 

f(VR) = GaVR if - E <  VR < E  { GbVR+(G,-Gb)E if VR > E 

where E > 0, G, < 0, and Gb < 0. In contrast with the 
nonlinear resistor considered in Part I, note that G, and Gb 
are now both negative. 

Piecewise-Linear Description of Chua 's Circuit 

We have seen that this circuit may be described by three 
ordinary differential equations (state equations). Choosing 
13, V2 and VI as state variables, we write the equations shown 
in ( 2 ) ,  ( 3 ) ,  and (4) at the bottom of this page, where G = 1/R, 
Gk = G + G, and Gb = G + Gb. 

Because of the piecewise-linear nature of NR,  the vector 
field of Chua's circuit may be decomposed into three distinct 
affine regions: VI < -E ,  IVll 5 E ,  and VI  > E.  We 
call these the D-1, DO, and D1 regions, respectively. Using 
piecewise-linear analysis, we examine each region separately, 
and then glue the pieces together. First, we review some results 
concerning linear algebra and ordinary differential equations. 

Eigenvalues and Eigenvectors Revisited 

ical system 
Consider the three-dimensional autonomous affine dynam- 

(5) 

where A is the (constant) system matrix and b is a constant 
vector. X(t)  is a trajectory originating from the initial state 
Xo. We saw in Part I that the equilibrium point XQ of this 
system is defined by 

X( t )  = AX(t )  + b, X(0) = Xo, 

XQ = - A - l b ,  

if A- l  exists, and that the dynamics close to XQ are governed 
locally by the linear system 

X(t) = J x ( t )  (6) 

where J is simply the system matrix A in the case of a linear 
or affine system. 

If the eigenvalues X I ,  X2, and A3 of J are distinct, then 
every solution x(t)  of (6) may be expressed in the form 

x(t) = c1 exp(X1t)l; + c2 e x p ( ~ z t ) &  + c3 exp(Ast)&, 

where &, &, and & are the (possibly complex) eigenvectors 
associated with the eigenvalues XI, X2, and X3, respectively, 
and the Ck's are (possibly complex) constants that depend on 
the initial state XO [lo]. 

In the special case when J has one real eigenvalue y and 
a complex conjugate pair of eigenvalues0 k j w ,  the solution 
of (6) has the form: 

x( t )  = 

C, exp(yt)f7+2c, exp(at)[cos(wt + 4")iir - sin(wt + 4,).Fj;] 

where ;,. and iii are the real and imaginary parts of the 
eigenvectors _associated with the complex conjygate pair of 
eigenvalues, is the eigenvector defined by Jt7 = yey, and 
cy, cc, and are real constants that are determined by the 
initial conditions. 

Let us relabel the real eigenvector E' and define E" as the 
complex eigenplane spanned by f& and Gi. 

We can think of the solution x ( t )  of (6) as being the sum 
of two distinct components xr(t) E E' and xc(t) E E": 

xr(t) = C' exp(yt)& 
xJt)  = 2c, exp(at)[cos(wt + &)i$ - sin(wt + 4,)77i]. 
Because the Jacobian matrix of an affine system is simply 

the system matrix A, the complete solution X(t) of (5) may 
be found by translating the origin of the linearized coordinate 
system to the equilibrium point XQ. Thus, 

X(t)  = XQ + x ( t )  
= XQ f &(t) + xc(t). 

We can determine the qualitative behavior of the complete 
solution X(t) by considering separately the components x, ( t )  
and xc(t)  along E' and E", respectively. 

If y > 0, x r ( t )  grows exponentially in the direction of E'; 
if y < 0, xT( t )  tends asymptotically to zero. When a > 0 
and w # 0, xc(t) spirals away from XQ along the complex 
eigenplane E", and if CT < 0, xc( t )  spirals toward XQ along 
E". 

( 2 )  

( 3 )  

d13 1 - = --v2 
dt L 

1 G 
dt C2 C2 

dV1 G 1 
- = -(Vz - VI)  - --f(V1) = 
dt Cl C1 

dVz = -13 - -(v2 - vi) 
if v1 < -E 

if - E <  VI < E  (4) 

gv2 - $v1 - ( G ~ ; ~ ~ P ) E  if v1 > E 
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Fig. 4. Equivalent circuit of Chua's circuit (Fig. 2) in the DO region. 
R, = l /Ga .  

We remark that the vector E' and plane E" are invariant 
under the flow (5). If X ( 0 )  E E', then X ( t )  E E' for all 
t;  if X(0) E E", then X ( t )  E E" for all t. An important 
consequence of this is that a trajectory X(t) cannot cross 
through the complex eigenspace E'. Suppose X ( t 0 )  E E" 
at some time t o ;  then X ( t )  E E" for all t > t o .  

A state X E lR3 lies on the plane E" if ( X  - X Q )  . n = 0, 
where ' denotes the dot product and n is the normal vector, 
which is perpendicular to E". Thus, the plane E" through an 
equilibrium point X Q  is characterized by the normal vector n. 

We are now ready to examine the dynamics of Chua's circuit 
in each region. We look at Do first. 

The Middle Region ( 1  VI I 5 E )  

When IV1l 5 E ,  Chua's circuit is described by 

1 
d t  L 
d4 = --v2 
dV2 I G 

~ = -1, - -(V2 - V1) 
d t  C2 C2 

dVi - G Gk - - -v, - -v, 
dt C1 C1 

The DO equivalent circuit is simply the linear parallel RLC 
circuit shown in Fig. 4. 

This linear circuit has a single equilibrium point at the origin 
whose stability is completely specified by the eigenvalues of 

namely, the zeros of the characteristic polynomial 

Throughout this paper, we consider a fixed set of component 
values: L = 18 mH, C2 = 100 nF, C1 = 10 nF, G, = -55160 
mS = -757.576pS, Gb = -9122 mS = -409.091pS, and 
E = l V .  

When G = 550pS, the eigenvalues of J F ~  are: 

70 M 25291 

CO f j w ,  M -5842 3z j19720 

Associated with the unstable real eigenvalue yo in the DO 
region is an eigenvector E'(0) that is defined by 

JF,E'(O) = yoE'(0). 

Fig. 5. Dynamics of the Do region. A trajectory starting slightly above the 
stable complex eigenplane E'(0) spirals toward the origin along this plane 
and is repelled close to 0 in the direction of the unstable eigenvector ET(0) .  

Writing ET(0)  = [x, y, z ] ~ ,  we have 

Normalized to z = 1, the corresponding eigenvector is: 

The real and imaginary parts of the complex eigenvectors 
associated with ~ 7 0  f jwo span a complex eigenplane, which 
we denote by E"(0). The vector normal to E"(0) is 

-9 ( 7 0  + g) (yo + g )  + g [ + ( 7 0  1 + $) ] = [{;I 
where yo is the real eigenvalue in DO. 

This plane is characterized by the fact that for every 
X E E"(O), JF,X E E"(0). Thus, a trajectory starting 
on the eigenplane E"(0) evolves along EC(0).  We remarked 
earlier that a trajectory cannot cross through an eigenplane. An 
important consequence of this is that a trajectory that originates 
from an initial state above the eigenplane remains indefinitely 
above the plane, and one that originates below E"(0) remains 
forever below the plane. 

Qualitative Description of the DO Dynamics: A trajectory 
starting from some initial state X 0  in the Do region may be 
decomposed into its components along the complex eigenplane 
E"(0) and along the eigenvector E'(0). When yo > 0 and 
(TO < 0, the component along E"(0) spirals toward the 
origin along this plane while the component in the direction 
E'(0) grows exponentially. Adding the two components, 
we see that a trajectory starting slightly above the stable 
complex eigenplane E"(0) spirals toward the origin along 
the E"(0) direction, all the while being pushed away from 
E"(0) along the unstable direction E'(0). As the (stable) 
component along E"(0) shrinks in magnitude, the unstable 
component grows exponentially, and the trajectory follows a 
helix of exponentially decreasing radius whose axis lies in the 
direction of Er(0) ;  this is illustrated in Fig. 5. 
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With all other component values as before, and G = 550pS, 
the eigenvalues of J F b  are: 

71 -23284 
01 f j w ,  z 1022 f j19260 

L+@?fzfT$ - - - I' 

13 

Associated with the stable real eigenvalue y1 in the D1 Fig. 6.  Equivalent circuit of Fig. 2 in the D1 region. Rb = 1/Gb.  
11 = ( G ~  - G,)E when ti  < -E and 11 = ( G ,  - G ~ ) E  when til > E,  region is an eigenvector E'(P+), which is defined by 

The Outer Regions (IV1 I > E )  

N R )  is described by 
In the outer regions, Chua's circuit (with a piecewise-linear 

1 
dt L 
9 = --v2 
dV, 1 G - = -13 - -(& - VI) 
d t  C2 Cz 

dV1 G G' I' - - - -v, - A V l  - - 
d t  C1 Ci Ci (7) 

where I' = (Gb - Ga) E when VI < -E (the D- 1 region) and 
I' = (Ga -Gb)E when VI > E (the D1 region). The D-1 and 
D1 affine equivalent circuits4 consist of a linear parallel RLC 
circuit with resistance RI, = 1/Gb and a shunt DC current 
source I / ,  as shown in Fig. 6. 

The equilibrium points P- and P+ of the outer regions are 
given by V2 = 0, VI = -IllGI,, and 1, = -GV1 = I'G/GL. 
Note that an equilibrium point is simply a DC solution of the 
equivalent circuit and may be determined by short-circuiting 
L and open-circuiting C1 and C2 [5].  The equilibrium points 
of the outer regions are thus 

If the equilibrium point P- lies outside the D-1 region, 
then it is called a virtual equilibrium point [ 5 ] .  While this is 
a valid solution of the affine DP1 equivalent circuit described 
by (7), it is not an equilibrium point of the circuit itself. For 
example, the equilibrium point P- lies outside D-1 (and so 
is a virtual equilibrium point) if 

( G a - G b ) E  > -E 

. Equivalently, the point P- is an equilibrium point of Fig. 2 
(when G > 0) only if -Gb < G < -Ga. 

We can determine the stability of the equilibrium points and 
the dynamics of the outer regions by examining the Jacobian 
matrix 

G + Gb 

0 -6 0 
J F b = [ $  -2 - -GL 21 

c1 c1 
whose eigenvalues are the zeroes of the characteristic poly- 

nomial 

4The D-1 and D1 equivalent circuits are not small-signal (local) equiva- 
lent circuits; they model the largesignal (global) behavior of the system in 
the outer regions. 

J F ~ E ' ( P + )  = nE'(P+). 

Writing E'(P+) = [x, y: XI', we have 

Normalized to z = 1, the real eigenvector is: 

I (71 + 2) (71 + $)y - G 

% ( Y l +  $) E'(P+)= [i] = [ 
1 

The real and imaginary parts of the complex eigenvectors 
associated with D~ 3~ j w l  span a complex eigenplane, which 
we denote EC(P+). The vector normal to E"(P+) is 

-%+l+g)(%+g) + $  

] [t;] %(% 1 + 2) 
where y1 is the real eigenvector in D1. 

This eigenplane is characterized by the fact that for every 
X E E"(P+), JFbX E E"(P+) so a trajectory starting on 
E"(P+) evolves along E"(P+). Once again, we note that 
a trajectory that originates from an initial state above the 
complex eigenplane remains indefinitely above the plane, and 
one that originates below remains below. 
Qualitative Description of the Dynamics for ]Vi] > E: 
Associated with the stable real eigenvalue y1 in the D1 region 
is the eigenvector E'(P+). The real and imaginary parts of 
the complex eigenvectors associated with 01 * j w l  define a 
complex eigenplane E" (P+). 

A trajectory starting from some initial state Xo in the D1 
region may be decomposed into its components along the 
complex eigenplane E" (P+) and the eigenvector E'( P+). 
When y1 < 0 and ~1 > 0, the component on E"(P+) spirals 
away from P+ along this plane while the component in the 
direction of E'(0) tends asymptotically toward P+. Adding 
the two components, we see that a trajectory starting close to 
the stable real eigenvector E'(P+) above the complex eigen- 
plane moves toward Ec(P+) along a helix of exponentially 
increasing radius. Since the component along E'(P+) shrinks 
exponentially in magnitude and the component on E"(P+) 
grows exponentially, the trajectory is quickly flattened onto 
EC(P+), where it spirals away from P+ along the complex 
eigenplane; this is illustrated in Fig. 7. 

Note that because of the strong rate of contraction along 
the E'(P+) direction, a trajectory spends most of its time in 
D1 coasting very close to E"(P+). Consequently, the system 
appears locally to be two-dimensional and can therefore be 
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Fig. 7. Dynamics of the D1 region. A trajectory starting above the unstable 
complex eigenplane E"(P+) close to the eigenvector E'(P+) moves toward 
the plane and spirals away from P+ along E'(P+). By symmetry, the D-1 
region has equivalent dynamics. 

Fig. 8. dc equivalent circuit of Fig. 2 obtained by short-circuiting the 
inductor L and open-circuiting capacitors C1 and C2. 

readily analyzed by using one-dimensional discrete maps (see, 

By symmetry, the equilibrium point P- in the D-1 region 
has three eigenvalues: y1 and ~ 7 1  f j w l .  The eigenvector 
E'(P-) is associated with the stable real eigenvalue 71; the 
real and imaginary parts of the eigenvectors associated with the 
unstable complex pair ~1 f j w l  define an eigenplane E"(P-) 
along which trajectories spiral away from E .  

e.g., [I l l) .  

Global Behavior 

The global dynamics of Chua's circuit may be determined 
by piecing together the three-dimensional vector fields of the 
three regions D-l, DO, and D1. 

The equilibrium points of the entire circuit are defined by 

1 
L 

0 = --V2 
1 G 
c2 CZ 

0 = -13 - -(V2 - v 1) 

G 1 
0 = -(V2 - VI) - -IR 

C1 Cl 

Equivalently, one open-circuits the capacitors C1 and C2, 

and short-circuits the inductor L to find the dc solutions. This 
is illustrated in Fig. 8. Clearly, the dc solution of this circuit 
is IR  = -GV,. The equilibrium points may be determined 
graphically by intersecting the load line IR = -GV, with the 
DP characteristic IR  = f(VR) of the nonlinear resistor N R ,  as 
shown in Fig. 9 [ 5 ] .  When G > IG,( or G < IGbl, the circuit 
has a unique equilibrium point at the origin (and two virtual 
equilibria P- and P+); otherwise, it has three equilibrium 
points at P- , 0, and P+. 

-: - -- - +K 

(b) 

Fig. 9. dc equilibrium points of Fig. 2 may be determined graphically by 
intersecting the load line TR = -GVR with the DP characteristic of A\~R. 
(a) If G > (Gal or G < (GbJ, the circuit has a unique equilibrium point 
at the origin (E  and P+ are virtual equilibria in this case). (b) When 
lGbl < G < IG.1, the circuit has three equilibrium points at P-, 0, and 
p+. 

In the following discussion, we consider the global behavior 
of the circuit using our chosen set of parameters with R in the 
range 0 5 R 5 20000 (500pS 5 G < 03 S). 

Fig. 10 is a series of simulations of the circuit shown in 
Fig. 20 with the following parameter values: L = 18 mH, 
C, = 100 nF, C1 = 10 nF, G, = -55160 mS = -757.576pS, 
Gb = -9/22 mS = -409.091pS, and E = 1 V. Ro = 12.5R 
models the parasitic series resistance of a real inductor. R is 
our bifurcation parameter. 

Equilibrium Point and Hopf Bifurcation: When R is large 
(2000 0), the outer equilibrium points P- and P+ are stable 
(71 < 0 and 01 < 0, w1 # 0); the inner equilibrium point 0 is 
unstable (yo > 0 and (TO < 0, W O  # 0). 

Depending on the initial state of the circuit, the system 
remains at one outer equilibrium point or the other. Let us 
assume that we start at P+ in the D1 region. This equilibrium 
point has one negative real eigenvalue and a complex pair with 
negative real parts. The action of the negative real eigenvalue 
y1 is to squeeze trajectories down onto the complex eigenplane 
E"(P+), where they spiral toward the equilibrium point P+. 
Fig. IO(a) shows the geometry of the piecewise-linear vector 
space when R = 20000 and a trajectory X(t) that spirals 
toward the steady-state equilibrium point solution P+. 

As the resistance R is decreased, the real part of the com- 
plex pair of eigenvalues changes sign and becomes positive. 
Correspondingly, the outer equilibrium points become unstable 
as cr1 passes through 0; this is called a Hopf bifurcation. The 
real eigenvalue of P+ remains negative, so trajectories in the 
D1 region converge toward the complex eigenplane E"(P+). 
However, they spiral away from the equilibrium point P+ 
along E'(P+) until they reach the dividing plane U1 (defined 
by VI E E )  and enter the DO region. 

The equilibrium point at the origin in the DO region has 
a stable complex pair of eigenvalues and an unstable real 
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z=====- 4-:---------- 

(e) 

Fig. 10. Simulated period-doubling sequence for Chua's oscillator. (a) G = 5 0 0 j r S  (equilibrium point). P+ is the equilibrium point in the D1 region; 
E'(P+) and Ec(P+) are the corresponding real eigenvector and complex eigenplane respectively. The equilibrium point in the Do region is denoted by 0; 
its real eigenvector is E'(0) and its complex eigenplane is E"(0) .  U 1  is the plane defined by r/; = E which separates the D1 and DO regions. U-1 is the 
boundary between DO and D-1; it is defined by \/; = -E. P- is the equilibrium point in the D-1 region: its complex eigenplane is Ec(P-)  and its real 
eigenvector is E'(P-).  (b) G = 530p.S (period-l limit cycle). The trajectory spirals away from P+ close to Ec(P+) until it crosses U1 and enters Do, where 
it is folded back toward D1. (c) G = 537pS  (period-2 limit cycle); (d) G = 539pS (period-4 limit cycle); (e) G = 511pS (Spiral-Chua chaotic attractor). 

eigenvalue. Trajectories that enter the Do region on the com- 
plex eigenplane EC(0)  are attracted to the origin along this 
plane. Trajectories that enter Do from D1 below or above 
the eigenplane either cross over to DP1 or are turned back 
toward D1, respectively. For R sufficiently large, trajectories 
that spiral away from P+ along E"(P+) and enter Do above 
EC(0)  are returned to D1, producing a stable period I limit 
cycle. This is illustrated in Fig. 10(b). 

Period-Doubling: As the resistance R is decreased further, 
a period-doubling or pitchfork bifurcation occurs. The limit 
cycle now closes on itself after encircling P+ twice; this is 
called a period 2 cycle because a trajectory takes approx- 

imately twice the time to complete this closed orbit as to 
complete the preceding period 1 orbit (see Fig. lO(c)). 

Decreasing the resistance R still further produces a cascade 
of period-doubling bifurcations to period 4 (Fig. 10(d)), period 
8, period 16, and so on until an orbit of infinite period is 
reached, beyond which we have chaos (see Fig. 10(e)). This 
is a Spiral-Chua strange ~ t t r a c t o r . ~  

The Spiral-Chua attractor in Fig. 1O(e) looks like a ribbon 
or band that is smoothly folded on itself; this folded band 

5An attractor is a stable steady-state solution of a dynamical system. An 
attractor is called srrange or chaotic if it contains a transversal homoclinic 
orbit [I]. 
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Fig. 11. (a) Simulated period-3 window (G = 5 4 2 . 5 ~ s )  in Chua's 
oscillator. (b) Period-6 window (G = 54'2.8~1s). 

is the simplest type of strange attractor [12]. A trajectory 
from an initial condition XO winds around the strip repeatedly, 
retuming close to XO, but never closing on itself. 

Periodic Windows: Between the chaotic regions in the pa- 
rameter space of Chua's circuit, there exist ranges of the 
bifurcation parameter R over which stable periodic motion 
occurs. These regions of periodicity are called periodic win- 
dows. Periodic windows of periods 3 and 5 are readily found 
in Chua's circuit. These periodic limit cycles undergo period- 
doubling bifurcations to chaos as the resistance R is decreased. 
Fig. l l (a)  shows a period 3 window, so called because the 
trajectory encircles the outer equilibrium point P+ three times 
before closing on itself. Fig. l l (b)  shows a period 6 orbit 
that results from a period-doubling bifurcation of this period 
3 limit cycle. 

Spiral-Chua Attractor: Fig. 12 shows three views of an- 
other simulated Spiral-Chua strange attractor. Fig. 12(b) is a 
view along the edge of the outer complex eigenplanes E"(P+) 
and EC(P-); notice how trajectories in the D1 region are 
compressed toward the complex eigenplane Ec(P+) along the 
direction of the stable real eigenvector E'(P+) and that they 
spiral away from the equilibrium point P+ along E"(P+). 

When a trajectory enters the Do region through U1 from 
D1, it is twisted around the unstable real eigenvector E'(0) 
and returned to D1. 

Fig. 12(c) shows clearly that when the trajectory enters 
DO from D1, it crosses U1 above the eigenplane EC(0).  The 
trajectory cannot cross through this eigenplane; therefore, it 
must retum to the D1 region. 

(ci 

Fig 12 Three views of a simulated Spiral-Chua attractor In Chua's oscillator 
with G = 55OpS (a) Reference view (compare with Figs I O  and 11) (b) 
View along the edge of the outer complex eigenplanes Er(P+) and Ec(P-) ,  
note how the trajectory in D1 is flattened onto Ec(P+) (c) View along the 
edge of the complex eigenplane EC(  0), trajectories cannot cross this plane 

Double-Scroll Chua Attractor: Because we chose a non- 
linear resistor with a symmetric nonlinearity, every attractor 
that exists in the D1 and DO regions has a counterpart 
(mirror image) in the D-l and DO regions. As the coupling 
resistance R is decreased further, the Spiral-Chua attractor 
"collides" with its mirror image, and the two merge to form a 
single compound attractor c$lled a double-scroll Chua strange 
attractor [2], as shown in Fig. 13. 

Once more, we show three views of this attractor in order 
to illustrate its geometrical structure. Fig. 13(b) is a view of 
the attractor along the edge of the outer complex eigenplanes 
E"(P+) and EC(P-) .  Upon entering the D1 region from DO, 
the trajectory collapses onto E"(P+) and spirals away from 
P+ along this plane. 
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Fig. 13. Three views of a simulated double-scroll Chua attractor in Chua's 
oscillator with G = 565pS.  (a) Reference view (compare with Figs. IO,  11,  
and 12). (b) View along the edge of the outer complex eigenplanes E'(P+) 
and Ec(P-) ;  note how the trajectory in D I  is flattened onto E'(€'+) and 
onto E"(P-) in D-1. (c) View along the edge of the complex eigenplane 
E C ( 0 ) ;  a trajectory entering Do from D1 above this plane retums to D1 
while one entering Do below E C ( 0 )  crosses to D-1. 

Fig. 13(c) is a view of the attractor along the edge of the 
complex eigenplane E"(0) in the inner region. Notice once 
more that when the trajectory crosses U1 into Do above E"(O), 
it must remain above E"(0) and so returns to D I .  Similarly, if 
the trajectory crosses U1 below E"(O), it must remain below 
EC(0) and therefore crosses over to the D-1 region. Thus, 
EC(0)  presents a knife-edge to the trajectory as it crosses U 1  

into the Do region, forcing it back toward D1 or across DO 

Boundary Crisis: Reducing the resistance R still further 
produces more regions of chaos, interspersed with periodic 
windows. Eventually, for a sufficiently small value of R, the 

to D-1. 

6 1  I I I I I 
4 -  

I I I I I 

Fig. 14. Sensitive dependence on initial conditions. Two time waveforms 
1; ( t )  from Chua's oscillator with G = 5 5 O p S ,  starting from (13. \,%.I,;) = 
(1.81OmA, 222.014mV, -2.286V) [solid line] and (13,V~. 1,;) = (1.810mA. 
222.000mV, -2.286V) [dashed line]. Note that the trajectories diverge within 
5 ms. Horizontal axis: t (ms); Vertical axis: \'i (V). Compare with Fig. 13. 

0 1 2 3 4 5  

unstable saddle trajectory [2] that normally resides outside 
the stable steady-state solution collides with the double-scroll 
Chua attractor, and a boundary crisis [ 131 occurs. After this, 
all trajectories become unbounded. While an unbounded tra- 
jectory can occur in a computer simulation, the real world 
behaves slightly differently, as we shall see. 

Characteristics of Chaos 

Sensitive Dependence on Initial Conditions: Consider once 
more the double-scroll Chua attractor shown in Fig. 13. Two 
trajectories starting from distinct, but almost identical, initial 
states in D1 will remain close together until they reach the 
separating plane U,. Imagine that the trajectories are still 
close at the knife-edge, but that one trajectory crosses into 
DO slightly above E"(0) and the other slightly below E"(0). 
The former trajectory retums to D1, and the latter crosses over 
to D-1; their "closeness" is lost. 

The time-domain waveforms VI ( t )  for two such trajectories 
are shown in Fig. 14. These are solutions of Chua's oscillator 
with the same parameters as those in Fig. 13; the initial 
conditions are (4, V2. V l )  = (1.810mA, 222.014mV, -2.286V) 
(solid line) and ( I3 ,  V2,  Vl)  = (1.8 lOmA, 222.000mV, -2.286V) 
(dashed line). Although the initial conditions differ by less than 
0.01% in just one component (V,), the trajectories diverge 
and become uncorrelated within 5 ms because one crosses the 
knife-edge before the other. 

This rapid decorrelation of trajectories that originate in 
nearby initial states, commonly called sensitive dependence 
on initial conditions, is a generic property of chaotic systems. 
It gives rise to an apparent randomness in the output of the 
system and long-term unpredictability of the state. 

Because chaotic systems are deterministic, two trajectories 
that start from identical initial states will follow precisely the 
same paths through the state space. In practice, it is impossible 
to construct two systems with identical parameters, let alone to 
start them from identical initial states. However, recent work 
by Pecora and Carroll and others [14], [15] has shown that 
it is possible to synchronize two chaotic systems so that their 
trajectories remain close. These ideas are now being exploited 
in secure communication systems. Information modulated onto 
a "random" chaotic carrier can be demodulated by using a 
synchronized receiver (see, e.g., [16]-[ 1 81). 

Randomness in the Time Domain: Fig. 15(a), 15(b) , and 
15(c) show the voltage waveforms V l ( t )  corresponding to 
the period 1, period 2, and Spiral-Chua attractors in Figs. 
10(b), 1O(c), and 12, respectively. The period I waveform is 
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Fig. 15. Simulated time waveforms 1.1 ( t )  from Chua’s oscillator with (a) 
G = 5 3 0 ~ 5  (period I limit cycle); (d) G = 5 3 7 p S  (period 2 limit cycle); (c) 
G = 5 5 0 p S  (Spiral-Chua chaotic attractor). Horiiontal axis: t (ms); Vertical 
axis: \,’I (V). Compare with Figs. 10(b), IO(c), and 12, respectively. 

periodic; it looks like a slightly distorted sinusoid. The period 
2 waveform is also periodic. It differs qualitatively from the 
period 1 in that the pattern of a large peak followed by a 
small peak repeats approximately once every two cycles of 
the period 1 signal; this is why it is called period 2. 

In contrast to these periodic time waveforms, Vl(t )  for 
the Spiral-Chua strange attractor is quite irregular and does 
not appear to repeat itself in any observation period of finite 
length. Although it is produced by a third-order deterministic 
differential equation, the solution looks “random.” 

Broadband Power Spectrum: Every periodic signal may be 
decomposed into a Fourier series-a weighted sum of sinu- 
soids at integer multiples of a fundamental frequency [19]. 
Thus, a periodic signal appears in the frequency domain as a 
set of spikes at the fundamental frequency and its harmonics. 
The amplitudes of these spikes correspond to the coefficients 
in the Fourier series expansion. The Fourier transform is an 
extension of these ideas to aperiodic signals; one considers 
the distribution of the signal’s power over a continuum of 
frequencies rather than on a discrete set of harmonics [19], 
Wl. 

The distribution of power in a signal s ( t )  is most commonly 
quantified by means of the power density spectrum, often 
simply called the power spectrum. The simplest estimator of 
the power spectrum is the periodogram [20], [21], which, given 
N uniformly spaced samples x ( m / f , ) ,  m = 0.1, . . . , N - 1 of 
~ ( t ) ,  yields N/2  + 1 numbers P ( n f s / N ) ,  71 = 0,1 , .  . . . N/2,  
where fs is the sampling frequency. 

If one considers the signal ~ ( t )  as being composed of 
sinusoidal components at discrete frequencies, then P(  nfs  / N )  
is an estimate of the power in the component at frequency 
n f , / N .  By Parseval’s theorem, the sum of the power in each 
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Fig. 16. Power spectra for simulated time waveforms l L z ( t )  from Chua’s 
oscillator with (a) G = 53011s (period-l limit cycle)-the power spectrum 
consists of a fundamental frequency and higher harmonics; (d) G = 537//S 
(period-2 limit cycle)-this periodic signal is characterized by a discrete 
power spectrum; (c) G = 550pS (Spiral-Chua chaotic attractor)-a chaotic 
waveform has a broadband power spectrum; (d) G = 565pS (double-scroll 
Chua chaotic attractor). Horizontal axis: frequency (kHz); Vertical axis: power 
(mean squared amplitude of I , ( t ) )  (dB). 

of these components equals the mean-squared amplitude of the 
N samples of z ( t )  [21], 1221. 

If z ( t )  is periodic, then its power will be concentrated in 
a dc component, a fundamental frequency component, and 
harmonics. In practice, the discrete nature of the sampling 
process causes power to “leak” between adjacent frequency 
components; this leakage may be reduced by “windowing” 
the measured data before calculating the periodogram [20], 
[21]. In the following discussion, we consider 8192 samples 
of V2(t) recorded at 200 kHz; leakage is controlled by applying 
a Welch window [21] to the data. 

We remarked earlier that the period 1 time waveform corre- 
sponding to the attractor in Fig. 10(b), is almost sinusoidal; we 
expect, therefore, that most of its power should be concentrated 
at the fundamental frequency. The power spectrum of the 
period 1 waveform V2(t)  shown in Fig. 16(a) consists of 
a sharp spike at approximately 3 kHz and higher harmonic 
components that are over 30 dB less than the fundamental. 

Because the period-2 waveform repeats roughly once every 
0.67 ms, this periodic signal has a fundamental frequency 
component at approximately 1.5 kHz (see Fig. 16(b)). Notice, 
however, that most of the power in the signal is concentrated 
close to 3 kHz. 
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Fig. 17. Required three-segment piecewise-linear DP characteristic for the 
Chua diode in Fig. 2. 

The Spiral-Chua attractor is qualitatively different from 
these periodic signals. The aperiodic nature of its time-domain 
waveforms is reflected in the broadband noise-like power 
spectrum (Fig. 16(c)). No longer is the power of the signal 
concentrated in a small number of frequency components; 
rather, it is distributed over a broad range of frequencies. This 
broadband structure of the power spectrum persists even if 
the spectral resolution is increased by sampling at a higher 
frequency fs. 

The chaotic time waveform due to motion on the double- 
scroll Chua strange attractor also possesses a broad noiselike 
power spectrum, as shown in Fig. 16(d). 

Laboratory Experiment: Chua ’s Circuit 
In this experiment, we demonstrate the concepts of multiple 

equilibria, bistability, limit cycles, and chaos. We examine 
Hopf and period-doubling bifurcations, eventual passivity, and 
a boundary crisis. 

Practical Realization of Chua ’s Circuit: Chua’s circuit can 
be realized in a variety of ways by using standard or custom- 
made electronic components. Since all of the linear elements 
(capacitor, resistor, and inductor) are readily available as two- 
terminal devices, our principal concern here is with circuitry 
to realize a nonlinear resistor NR with the prescribed DP 
characteristic (shown in Fig. 17). 

This line of research was initiated in the mid-l960s, when 
Chua developed a theory of nonlinear circuit synthesis and 
realized that such a theory would be academic unless one 
were allowed to use two-terminal nonlinear resistors with any 
prescribed v-i characteristics. This in turn motivated the de- 
velopment of systematic synthesis procedures for two-terminal 
nonlinear resistors [231, [24], [251, 1261, [271, [281. The term 
Chua diode [29] will henceforth be used to denote any two- 
terminal nonlinear resistor with a piecewise-continuous DP 
characteristic synthesized by using standard circuit elements. 

Several implementations of Chua diodes with three-segment 
odd-symmetric piecewise-linear DP characteristics already ex- 
ist in the literature; these use operational amplifiers (op amps) 
[7], diodes [6], and transistors. A systematic procedure for 
synthesizing precision piecewise-linear Chua diodes with in- 
dependently adjustable slopes and breakpoints is described in 
[30]. Recently, a single-chip integrated circuit (IC) realization 
of a Chua diode using operational transconductance amplifiers 
has been reported [31], [32] and an entire monolithic Chua’s 
circuit has been fabricated [33]. 

In this section, we describe a practical implementation of 
Chua’s circuit that uses two op amps and six resistors to 

L 

Fig. 18. Practical implementation of Chua’s circuit using two op amps and 
six resistors to realize the Chua diode [29]. Component values are listed in 
Table I. 

TABLE I 
COMPONENT LIST FOR THE CIRCUITS USED IN PARTS I AND 11 OF THIS PAPER 

Element Description 
~~ 

Value Tolerance 

Op amp ( f  AD712, TL082, or 
equivalent) 

Op amp (i AD712, TL082, or 
equivalent) 
Capacitor 
Capacitor 

Potentiometer 
W Resistor 

$ W Resistor 
$ W Resistor 
$ W Resistor 
$ W Resistor 
f W  Resistor 

Inductor (TOKO type lORB or 
equivalent) 

10nF f 5 6  
100nF f 5 6  
2 kcl 
3.3 k 0  3 5 %  
22 kb2 &5% 
2 2 k R  &5% 
2.2 k 0  6 5 %  
220 62 6 5 %  
220 (2 *5% 

18mH &IO% 

implement the Chua diode [29]. This robust circuit is intended 
for demonstration, research, and educational purposes. While 
it may appear more complicated than earlier implementations 
in that the nonlinear resistor comprises two op amps, it is 
possible to buy two op amps in a single package. Thus, our 
circuit uses a minimum number of discrete components: a pair 
of op amps and six resistors to implement the Chua diode, two 
capacitors, an inductor, and a variable resistor. 

Circuit Description: Fig. 18 shows a practical implementa- 
tion of Chua’s circuit using a dual op amp and six resistors to 
implement the Chua diode NR.  A complete list of components 
is given in Table I. 

In addition to the components listed, we recommend that 
two bypass capacitors of at least O . l @  each should be 
connected between the power supplies and ground, as close 
to the op amps as possible. The purpose of these capacitors is 
to maintain the power supplies at a steady dc voltage. 

The op amp subcircuit consisting of A I ,  A2 and Rl-Rs 
functions as a nonlinear resistor NR with driving-point char- 
acteristic as shown in Fig. 19. Using two 9V batteries to 
power the op amps gives V+ = 9V and V -  = -9V. 
From measurements of the saturation levels of the AD712 
outputs, Esat M 8.3V, giving E z 1V. With R2 = R3 and 
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Fig. 19. Every physically realizable nonlinear resistor IV, is eventually 
passive-the outermost segments (while not necessarily linear as shown here) 
must lie completely within the first and third quadrants of the I h - 1 ~  plane 
for sufficiently large IikI and 11~1. 

RO L!TGF$% - - - 

Fig. 20. 
in Fig. 18. The DP characteristic of the Chua diode is as shown in Fig. 19. 

Equivalent circuit of the practical realization of Chua’s circuit shown 

R5 = R6, the nonlinear characteristic is defined by G, = 
-1/R1- 1/R4 = -50166 mS, Gb = l/R3 - 1/R4 = -9122 
mS, and E = RlE,,,/(Rl + A?,) M 1 V [29]. 
Eventual Passivity and the Outer Dissipative Segments: The 
DP characteristic of the op amp-based Chua diode differs from 
the desired piecewise-linear Characteristic shown in Fig. 17 
in that it has jive segments, the outer two of which have 
positive slopes G, = l/R, = 11220s. Every physical resistor 
is eventually passive, meaning simply that for a large enough 
voltage across its terminals, the instantaneous power p ( t )  
(= v( t ) z ( t ) )  consumed by a real resistor is positive. For large 
enough ( U /  or 1 1 1 ,  therefore, its DP characteristic must lie 
only in the first and third quadrants of the U--a plane. Hence, 
the DP characteristic of a real Chua diode must include at 
least two outer segments with positive slopes which retum 
the characteristic to the first and third quadrants (see Fig. 19). 
From a practical point of view, as long as the voltages and 
currents on the attractor are restricted to the negative resistance 
region of the characteristic, these outer segments will not affect 
the circuit’s behavior. 

By definition, every attractor is bounded. Therefore, it is 
always possible to scale the voltages and currents in the circuit 
so that any particular steady-state solution lies completely 
within the inner three segments of the Chua diode’s DP 
characteristic (see [29] and [30], for example). 

The simplified equivalent circuit of Fig. 18 is shown in Fig. 
20. We model the real inductor as a series connection of an 
ideal linear inductor L and a linear resistor Ro. 
Experimental VerGcation of a Voltage-Controlled DP Charac- 
teristic: The DP characteristic of the nonlinear resistor N R  
can be measured in isolation by means of the circuit shown 
in Fig 21. 

Resistor Rs, known as a current-sensing resistor, is used to 
measure the current IR which flows into the nonlinear resistor 
NR when a voltage VR is applied across its terminals. An 
appropriate choice of Rs in this example is 100 0. Current 

+ + 

VS VR i - + VIR - - 

R2 

R1 

I 

1 R s  

Fig. 21. The DP characteristic of Chua diode .VR can be measured by 
applying a triangular voltage waveform S> to the series combination of ~ V R  
and a small current-sensing resistor Rx. Plot -L;R(m I R )  versus I’R. The 
eight-pin dual op amp package is shown from above in schematic form. The 
reference end of the package is indicated by a dot or a semicircle (shown here). 

I I 1  I I T I I 1  I d  

Fig. 22. Measured ~ - - l  characteristic of the Chua diode in Fig. 18. I;S is 
a triangular waveform with zero DC offset, amplitude 15V peal-to-peak, 
and frequency 30 Hz. Horizontal axis: th (2V/div); Vertical axis: -ViR 
( 1 OOmV/div). 

I ,  flowing in Rs then causes a voltage VI, = - 1 0 0 I ~  
to appear across the sensing resistor. Thus, we can measure 
the DP characteristic of NR by applying a voltage Ifs as 
shown and plotting VI,(.( -IR) versus VR. This is achieved 
by connecting  VI^ to the y-input and VR to the x-input 
of an oscilloscope in 2-y mode. The resulting characteristic 
for the components listed in the table is shown in Fig 22. 
Note that we have plotted -VI, versus VR; this is possible 
if your oscilloscope permits inversion of the y-input in z-y 
mode. 

Practical Considerations for Op-Amp Based Chua Diodes: 
The breakpoints in the Chua diode’s DP characteristic are 
proportional to the saturation levels of the op amps. The 
saturation levels in turn are determined by the power supply 
voltages and by the internal architecture of the op amps. If 
the levels are different, as they typically are, the resulting DP 
characteristic will be asymmetric. This results in a double- 
scroll Chua attractor which has one lobe bigger than the 
other. 

Furthermore, the input offset voltage of an op amp causes 
a shift in the DP characteristic when it is used to implement a 
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Fig. 23. Typical experimental bifurcation sequence in Chua's circuit (component values as in Table I) recorded by using a Hitachi VC-6025 Digital Storage 
Oscilloscope. Horizontal axis VJ (a)-(h) 200mV/div, (i) 2V/div; vertical axis 1'; (a)-(h) lV/div, (i) 2V/div. (a) R = 1.831;!2, period 1; (b) R = 1.82kf2, 
period 2; (c) R = 1.81k12, period 4; (d) R = 1.80kf1, Spiral-Chua attractor. 

Chua diode. While asymmetry may be aesthetically unpleas- 
ing, it has little effect on the bifurcation sequence or on the 
nature of the attractor. 

If one wishes, the asymmetry due to saturation level mis- 
match may be corrected by adjusting the positive and negative 
power supply voltages until symmetry is achieved. For ex- 
ample, the negative saturation level might be 0.7 V less in 
magnitude than the positive level. This could be corrected by 
using power supplies of 9 V and -9.7 V instead of *9 V. 

Normally, it is not possible to zero the offset in an 8-pin 
dual op amp such as the AD712 or the TL082. In fact, we 
deliberately chose the AD7 12 because it draws negligible input 
current, by virtue of its FET input stage, and has a guaranteed 
maximum input offset voltage of 1.0 mV (AD712K) [34]. If 
the offset is disturbing, one may substitute for the dual op amp 
two single op amp equivalents such as the AD71 1 and TL081; 

these have offset balancing pins to enable the user to zero the 
offset voltage. 

Steady-State Solutions: A 2-D projection of each steady- 
state solution may be obtained by connecting V, and VI to the 
X and Y channels, respectively, of an X-Y oscilloscope. 

Bifurcations and Chaos: By reducing the variable resistor 
R in Fig. 18 from 2000 R toward zero, Chua's circuit exhibits 
a Hopf bifurcation from dc equilibrium, a sequence of period- 
doubling bifurcations to a Spiral-Chua attractor, periodic 
windows, double-scroll Chua strange attractor, and a boundary 
crisis, as illustrated in Fig. 23. 

Notice that varying R in this way causes the size of the 
attractors to change: the period 1 orbit is large; period 2 is 
smaller; the Spiral-Chua attractor is smaller again; and the 
double-scroll Chua attractor shrinks considerably before it 
dies. This shrinking is due to the equilibrium points P+ and 
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Chua attractor; (h) 
DP characteristic. 
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P- moving closer to the origin as R is decreased. This is 
easier to see in the simulations. Compare the position of P+ 
in Figs. IO(a) and 13. 

Alternative Bifurcation Sequence: An alternative way to 
view a bifurcation sequence is by adjusting C1. Fix the value 
of R at 1800 R and vary C1; monitor VI and V, as before. The 
full range of dynamical behaviors from equilibrium through 
Hopf, and period-doubling bifurcations, periodic windows, 
Spiral-Chua and double-scroll Chua chaotic attractors can 
be observed as C1 is reduced from 12.0 nF to 6.0 nF. 
Unlike the R bifurcation sequence, the size of the double- 
scroll attractor remains almost constant in the C1 bifurcation 
sequence because the positions of the equilibrium points are 
independent of C1. 

Eventual Passivity and the Big Limit Cycle: We noted ear- 
lier that no physical system can have unbounded trajectories; 
in particular, any physical realization of a Chua diode is 
eventually passive. The “unbounded’ trajectories that follow 
the boundary crisis are thus limited in amplitude by the power 
supplies that are used to power the Chua diode, and a large 
limit cycle results as shown in Fig. 23(i). This effect could of 
course be simulated by using a five-segment DP characteristic 
for IV, as shown in Fig. 19. 

Simulation of Chua ’s Circuit 

Our experimental observations and qualitative description 
of the global dynamics of Chua’s circuit may be confirmed by 
simulation using a specialized Nonlinear Dynamics simulation 
package such as INSITE 1351, 1361, or by employing a 
customized simulator. All of the computer-generated figures 
so far in Parts I and I1 of this tutorial paper were pro- 
duced by using special-purpose software called “Adventures 
in Bifurcations and Chaos” (ABC), which was developed 
specifically to accompany this work. The program (which uses 
a fourth-order Runge-Kutta integration routine [35]) is written 
in Microsoft QuickBASIC and runs without compilation on 
every IBM-compatible computer that has the MS-DOS version 
5.0 operating system. 

“ABC” simulates three example circuits: the linear and 
nonlinear parallel RLC circuits described in Part I, and Chua’s 
oscillator. For the two-dimensional examples, it generates and 
plots vector fields, time waveforms, and trajectories. In the 
case of Chua’s oscillator, the program calculates and draws 
equilibrium points, eigenvalues, eigenspaces, and trajectories. 
A two-dimensional projection of the three-dimensional dynam- 
ics is shown in a state space plot, and the corresponding time 
waveforms are simultaneously displayed in a time-domain 
window. The user may change the parameters, initial condi- 
tion, and viewing angle, as illustrated in Fig. 13. The ability 
to view the attractor in a variety of orientations, and thus to 
“walk through” the three-dimensional state space, permits one 
to visualize readily the geometric structure of the dynamics. 

In addition, the software is accompanied by an extensive 
database of sets of initial conditions and parameters that 
produce every dynamical behavior that has been reported for 
Chua’s oscillator: equilibrium points, bifurcation sequences, 
periodic orbits, homoclinic and heteroclinic orbits [ 11, and a 

plethora of chaotic attractors [8]. This library of steady-state 
solutions has been prepared over several years in collaboration 
with Leon Chua’s research group at the University of Califor- 
nia at Berkeley. It will be maintained and extended as new 
attractors are discovered.6 

SPICE Simulations 

For electrical engineers who are familiar with the SPICE 
circuit simulator 1371, but perhaps not with chaos, we present 
a net-list and simulation results for our robust implementation 
of Chua’s circuit. The AD712 op amps in this realization of 
the circuit are modeled using Analog Devices’ AD712 macro- 
model [38]. The TOKO lORB inductor has a nonzero series 
resistance which we have included in the SPICE net-list; we 
measured RO = 12.92. Node numbers are the same as those in 
Fig. 18: the power rails are 11 1 and 222; 10 is the “internal” 
node of our physical inductor where its series inductance is 
connected to its series resistance. 

A double-scroll Chua attractor results from our SPICE 3e2 
simulation using the input deck shown in Fig. 24. This attractor 
is plotted in Fig. 25. 
Dimensionless Coordinates and the (i-/l Bifurcation Diagram: 
Thus far, we have discussed Chua’s circuit equations in terms 
of seven parameters L,  C,, G, C1, E, G,, and Gb. We can 
reduce the number of parameters by normalizing the nonlinear 
resistor such that its breakpoints are at f l V  instead of *EV. 
Furthermore, we may write Chua’s circuit equations (2)-(4) 
in normalized dimensionless form by making the following 
change of variables: z = Vl /E,  y = V,/E, z = 13/(EG), 
and r = tG/C2. Thus: 

d z  
- = -y, 
d 7  
dy - - ,. - .I, - y + z 
d r  (9) 

d r  
dr 
- = fX(?/ - h(:c)) 

a(:y - b:z: - ( b  - U ) )  if z < -1 
a(p - ax)  if -1 5 z 5 1 (10) 
m(y- bz - ( a -  b ) )  if z > 1 

where U = Gh/G = 1 +- G,/G, b = GI/G = I + Gb/G, 
U = C2/C1, and /3 = C2/(LG2). Thus, each set of seven 
circuit parameters has an equivalent set of four normalized 
dimensionless parameters { a ,  b, U .  U } .  If we fix the values of 
a and b (which correspond to the slopes G, and Gb of the Chua 
diode), we can summarize the steady-state dynamical behavior 
of Chua’s circuit by means of a two-dimensional a-@ diagram. 

Fig. 26 shows the two-parameter bifurcation diagram in the 
(0.P)-plane with a = -1/7 and b = 217. In this diagram, 
each colored region denotes a particular type of steady- 
state behavior: for example, an equilibrium point, period 1, 
trajectory, period 2, Spiral-Chua attractor, double-scroll Chua 
attractor. Typical state-space behaviors are shown in the insets. 
For clarity, we show chaotic regions in a single color; it should 

‘Contact the author (&mail address: mpk@midir.ucd.ie) for a free copy of 
“ABC.” 
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ROBUST O P  AMP REALIZATION O F  CHUA’S CIRCUIT 

V+ 1 1 1 0  D C 9  
V- 0 222 D C  9 
L 1 10 0.018 
RO 10 0 12.6 
R 1 2 1770 
C2 1 0 100.ON 
C1  2 0 10.ON 
X A l  2 4 111 222 3 AD712 
R1 2 3 220 
R 2  3 4 220 
R3 4 0 2200 
XA2 2 6 111 222 6 AD712 
R4 2 6 22000 
RS 6 6 22000 
R6 6 0 3300 

AD712 SPICE Macro-model 
* Copyright 1991 by Analog Devices, Inc. (reproduced with permiasion) 

.SUBCKT AD712 13 16 12 16 1 4  

VOS 16 8 D C  0 
E C  9 0 1 4  0 1 
C 1  6 7 .6P 
R P  16 12 12K 
GB 11 0 3 0 1.67K 
R D 1  6 16 16K 
RD2 7 16 16K 
ISS 12 1 D C  lOOU 
CCI  3 11 16OP 
GCM 0 3 0 1 1.76N 
GA 3 0 7 6 2.3M 
R E  1 0  2.6MEG 
R G M  3 0 1.69K 
VC 12 2 D C  2.8 
VE 10 16 D C  2.8 
R O l  11 14 26 
C E  1 0 2 P  
R 0 2  0 11 30 
RS1 1 4  6.77K 
RS2 1 6  6.77K 
J1 6 13 4 PET 
J 2  7 8 6 P E T  
D C  14 2 DIODE 
D E  10 1 4  DIODE 
D P  16 12 DIODE 
D1  9 11 DIODE 
D2 11 9 DIODE 
10s 16 13 6E-12 

1/91,  R e v .  A 

.MODEL DIODE D 

.MODEL P E T  P J F ( V T O = - l  B E T A = l M  IS=26E- l2 )  

.ENDS 

.IC V(2)zO.l  V(l)=O 

.TRAN O.1MS 76.OMS 60.OMS 

.PRINT T R A N  V(2) V(1)  

. P L O T  T R A N  V(2)  V(1)  

.END 

Fig. 24. SPICE deck to simulate the transient response of our dual op amp 
implementation of Chua’s circuit. Node numbers are the same as those in Fig. 
10. The op amps are modeled by the Analog Devices AD712 macro model. 
RO models the series resistance of the real inductor L .  

be noted that these chaotic regions are further partitioned by 
periodic windows and “islands” of periodic behavior. 

To interpret the a-P diagram, imagine fixing the value 
of = c , / ( L G ~ )  and increasing (Y = C,/CI from a 
positive value to the left of the curve labeled “Hopf at 
P*”; experimentally, this corresponds to fixing the param- 
eters L,  Cz, G, E ,  G,, and Gb, and reducing the value of C1 
(previously, we called this a “Cl bifurcation sequence”). 

Initially, the steady-state solution is an equilibrium point. 
As the value of C1 is reduced, the circuit undergoes a Hopf 
bifurcation when cy crosses the “Hopf at Ph” curve. Decreas- 
ing C1 still further, the steady-state behavior bifurcates from 
period 1 to period 2 to period 4 and so on to chaos, periodic 
windows, and a double-scroll Chua attractor. The right edge 
of the chaotic region is delimited by a curve corresponding 
to the boundary crisis and “death” of the attractor. Beyond 
this curve, trajectories diverge toward infinity. Because of 
eventual passivity in a real circthit, these divergent trajectories 

V I  

400 1 

2.00 

0.00 

-2.00 

-4.00 I 
1 .oo 0’00 

I l ” 2  
1 .oo 

Fig. 25. SPICE 3e2 simulation of Fig. 18 using the input deck shown in 
Fig. 24 yields this double-scroll Chua attractor. Horizontal axis Vz (V); 
vertical axis 1; (V). The jaggedness of the trajectory results from the 
large timestep chosen by SPICE’S integration routine when using its default 
accuracy settings. 

will of course converge to a limit cycle in any physical 
implementation of Chua’s circuit. 

Reality of Chaos 

We saw earlier that a chaotic system is characterized by 
sensitive dependence on initial conditions: Small perturbations 
of the state grow exponentially with time. The approximation 
involved in integrating Chua’s circuit equations numerically 
and the effects of small random perturbations due to noise in 
an experiment produce simulated and experimental trajectories 
of chaotic systems that are not exact solutions of the state 
 equation^.^ It follows that any claim that a system is chaotic 
can be made only if accompanied by a rigorous mathematical 
proof. 

In general, it is extremely difficult to prove the existence of 
chaos in continuous-time systems. However, such a proof has 
been given for Chua’s circuit by Chua et al. [ 2 ] .  We paraphrase 
this result as follows: 
Theorem-Muthematical Chaos in Chua ’s Circuit: There exist 
regions in the (a,P) parameter space where the motion on 
a double-scroll Chua attractor is technically equivalent to 
that generated by a mathematical model of a coin toss-the 
Bernouilli shift. 

This theorem provides the first rigorous proof of chaos 
(in the sense of Shilnikov) for a physical system whose 
theoretical behavior agrees with both computer simulations 
and experimental results. 

111. CONCLUDING REMARKS 

In this two-part tutorial paper, we have guided the reader 
into the exciting world of nonlinear dynamics in continuous 
systems. By means of guided examples and experiments, we 
have studied the concepts of steady-state solutions, equilibrium 
points, stability, bifurcations, local and global dynamics, limit 
cycles, and chaos. 

In Part I, we showed that while the familiar linear parallel 
RLC circuit is a poor model of sustained oscillation in real 
systems, it is a useful aid in developing insights into the nature 

7Nevertheless, computed and observed trajectories do lie close to the 
underlying strange attractor if the local integration error or experimental noise 
is small [36]. 
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Fig. 26. Two-parameter 0-87 bifurcation diagram for the normalized dimensionless Chua’s circuit equations (8x10)  with a = -1/7 and b = 2/7  

of oscillation. Using the framework of piecewise-linear circuit 
theory, we showed how the linear RLC circuit could be used 
to explain the local behavior of more complicated systems. 
In particular, we inserted a series voltage-controlled nonlinear 
resistor in the parallel RLC circuit and saw how this forced 
us to add an additional transit capacitor to the circuit in order 
that it be well defined. In this way, the linear parallel RLC 
resonant circuit evolved into Chua’ s circuit. 

In Part 11, we have used the tools and insights developed in 
Part I to explain the geometrical origins of complex dynamics 
and chaos in Chua’s circuit. We have supported these qualita- 
tive observations with computer simulations and experiments. 

Chaos is characterized by a stretching and folding mecha- 
nism. Nearby trajectories of a deterministic dynamical system 
are pulled apart and folded back together repeatedly to produce 
complicated bounded nonperiodic motion on a strange attrac- 
tor. The exponential divergence of trajectories that underlies 
chaotic behavior, and the resulting sensitivity to initial condi- 
tions, lead to long-term unpredictability which manifests itself 
as randomness in the time-domain and produces a broadband 
noiselike power spectrum. 

While differential equations and mechanical systems pro- 
vide convenient frameworks in which to examine bifurcations 

and chaos, electronic circuits are unique in being easy to 
build, easy to measure, and easy to model. Furthermore, 
they operate in real time, and parameter values are readily 
adjusted. Just as the linear parallel RLC resonant circuit is 
the simplest paradigm for understanding periodic steady-state 
phenomena in linear circuits, so Chua’s circuit presents an 
attractive paradigm for studying nonperiodic phenomena in 
nonlinear circuits. The importance of Chua’s circuit and its 
relatives [39], [40], [41], [42], [43] is that they can exhibit 
every type of bifurcation and attractor that has been reported to 
date in third-order continuous-time dynamical systems. While 
exhibiting a rich variety of complex dynamical behaviors, the 
circuit is simple enough to be constructed and modeled by 
using standard electronic parts and simulators. 

We strongly encourage the reader to simulate, build, and 
analyze the circuits that we have presented here as aids to 
understanding the nature of oscillation and complex dynamics. 

ACKNOWLEDGMENT 
I am grateful to Prof. L. Chua (University of Califomia 

at Berkeley) for his support and encouragement, Mr. C. Wu 
(University of Califomia at Berkeley) for adding the Chua 
oscillator database to ABC, Prof. J. G. Lacy (University 



614 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 10, OCTOBER 1993 

College Dublin) for allowing me to use his computers, Mr. 
B. Mulkeen (University College Dublin) for introducing me 
to compiled QuickBASIC, Dr. P. Curran (University College 
Dublin) for stimulating discussions on ODE’S and chaos, Prof. 
M. Ogorzalek and Prof. L. Kocarev for their constructive crit- 
icism, and Mr. D. Sheingold (Analog Devices) for efficiently 
processing my request for permission to reproduce the AD7 12 
macro-model. 

REFERENCES 

[ 11 J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical 
Sysfems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 
1983. 

[2] L. 0. Chua, M. Komuro, and T. Matsumoto, “The double scroll family, 
Parts I and 11,” IEEE Trans. Circuits Syst., vol. CAS-33, no. 11, pp. 
1073-1 118. 1986. 

131 A. I. Mees and P. B. Chapman, “Homoclinic and heteroclinic orbits in 
the double scroll attractor,” IEEE Trans. Circuifs Syst., vol. CAS-34, 
no. 9, pp. 1 1  15-1 120, 1987. 

[4] M. J. Ogorzalek, “Taming chaos: Part I I4ont ro l .”  IEEE Trans. Circuirs 
Syst., this issue. 

[51 L. 0. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits. 
New York: McGraw-Hill, 1987. 

161 T. Matsumoto, “A chaotic attractor from Chua’s circuit,” IEEE Trans. 
Circuits Syst., vol. CAS-31, vol. 12, pp. 1055-1058, 1984. 

171 G. Q. Zhong and F. Ayrom, “Experimental confirmation of chaos from 
Chua’s circuit,” Int. J. Circuit Theory Appl., vol. 13, no. I I ,  pp. 93-98, 
1985. 

[SI L. 0. Chua, “Global unfolding of Chua’s circuit,” IEICE Trans. Funda- 
mentals (Special Issue on Chaos, Neural Networks, and Numerics), vol. 
E76-A, no. 5 ,  pp. 704-734, May 1993. 

[9] -, “The genesis of Chua’s circuit,” Archiv fiir Elektronik und 
Ubertragungstechnik, vol. 46, no. 4, pp. 250-257, 1992. 

[ I O ]  V. I. Arnold, Ordinary Differential Equations. Cambridge, MA: MIT 
Press, 1973. 

[ I  I] C. Wu and N. F. Rul’kov, “Studying chaos near one-dimensional maps: 
A tutorial,” IEEE Trans. Circuits Syst. (Special Issue on Chaos in 
Nonlinear Circuits), this issue. 

[ 121 J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos. 
New York: Wiley, 1986. 

[I31 C. Grebogi, E. Ott, and J. Yorke, “Chaotic attractors in crisis,” Phys. 
Rev. Lett., vol. 48, pp. 1507-1510, 1982. 

[I41 L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” 
Phys. Rev. Lett., vol. 64, no. 8, pp. 821-824, 1990. 

[ 151 T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,” IEEE 
Trans. Circuits Syst., vol. 38, no. 4, pp. 453456,  Apr. 1991. 

[ 161 M. J. Ogorzalek, “Taming chaos: Part I-Synchronisation,’’ ZEEE Trans. 
Circuits Syst., this issue. 

[17] H. Dedieu, M. P. Kennedy, and M. Hasler, “Chaos shift keying: Mod- 
ulation and demodulation of a chaotic carrier using self-synchronizing 
Chua’s circuits,” IEEE Trans. Circuits Syst., this issue. 

[I81 A. V. Oppenheim, G. W. Wornell, S.  H. Isabelle, and K. M. Cuomo, 
“Signal processing in the context of chaotic signals,” in Proc. IEEE 
ICASSP(San Francisco, CA), 1992, pp. IV-I 17-IV-120, 1992, vol. IV. 

[ 191 A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems. 
Englewood Cliffs, NJ: Rentice-Hall, 1983. 

[20] A. V. Oppenheim and R. W. Schafer, Digitul Signal Processing. En- 
glewood Cliffs, NJ: Prentice-Hall, 1975. 

1211 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 
Numerical Recipes in C. Cambridge, UK: Cambridge University Press, 
1988. 

[22] E. 0. Brigham, The Fast Fourier Transform. Englewood Cliffs, NJ: 
Prentice-Hall, 1974. 

(231 L. 0. Chua, Introducfion to Nonlinear Nefwork Theory. New York: 
McGraw-Hill, 1969. 

[24] -, “The rotator-A new network component,” Proc. ZEEE, vol. 55, 
no. 9, pp. 1566-1577, Sept. 1967. 

[25] -, “Synthesis of new nonlinear network elements,” Proc. IEEE, 
vol. 56, no. 8, pp. 1325-1340, Aug. 1968. 

[26] L. 0. Chua, J. B. Yu, and Y. Y .  Yu, “Negative resistance devices,” Int. 
J.  Circuir Theory Appl., vol. 1 I ,  pp. 161-186, Aug. 1983. 

[27] - , “Bipolar-JFET-MOSFET negative resistance devices,” IEEE 
Trans Circuifs Syst., vol. 32, pp. 4641, Jan. 1985. 

I281 L. 0. Chua and F. Ayrom, “Designing nonlinear single op-amp circuits: 
A cookbook approach,” Int. J.  Circuit Theory Appl., vol. 13, pp. 
235-268, July 1985. 

[29] M. P. Kennedy, “Robust op amp realization of Chua’s circuit,” Fre- 
quenz, vol. 46, no. 3 4 ,  Mar-Apr. 1992. 

[30] -, ”Synthesis of continuous piecewise-linear resistors for Chua’s 
circuit family using operational amplifiers, diodes, and linear resistors,” 
Int. J.  Circuit Theory Appl., vol. 21, no. 5, 1993. 

[31] J. M. Cruz and L. 0. Chua, “A CMOS IC nonlinear resistor for Chua‘s 
circuit,” IEEE Trans. Circuifs Sysf . ,  vol. 39, no. 12, pp. 985-995, Dec. 
1992. 

[32] -, “An IC diode for Chua’s circuit,” Znt. J .  Circuit Theory Appl., 
vol. 21, no. 2, Mar./Apr. 1993. 

(331 M. Delgado-Restituto and A. Rodriguez-Vasquez, “A CMOS monolithic 
Chua’s circuit,” J.  Circuits Syst. Comput., vol. 3, no. 2, June 1993. 

[34] Analog Devices, Inc., Linear Products Databook 1990/91, 1990. 
[35] T. S. Parker and L. 0. Chua, ‘“SITE-A software toolkit for the 

analysis of nonlinear dynamical systems,” Proc. IEEE, vol. 75, no. 8, 
pp. 1081-1089, 1987. 

[36] __ , Practical Numerical Algorithms for Chaotic Systems. New 
York: Springer-Verlag, 1989. 

[37] B. Johnson, T. Quarles, A. R. Newton, D. 0. Pederson, and A. 
Sangiovanni-Vincentelli, “SPICE3 version 3e user’s manual,” ERL 
Memo., Electron. Res. Lab., Univ. of California at Berkeley, 1991. 

[38] Analog Devices, Inc., “SPICE model library, Release C 1/91, 1991. 
[39] T. S. Parker and L. 0. Chua, “The dual double scroll equation,” IEEE 

Trans. Circuits Syst., vol. CAS-34, no. .9, pp. 1059-1073, 1987. 
[40] S. Wu, “Chua’s circuit family,” Proc. IEEE, vol. 75, no. 8, pp. 

1022-1032, 1987. 
[41 I P. Bartissol and L. 0. Chua, “The double hook,” ZEEE Trans. Circuifs 

Syst., vol. 35, no. 12, pp. 1512-1522, 1988. 
[42] C. P. Silva and L. 0. Chua, “The overdamped double scroll family,” 

Int. J. Circuit Theory Appl., vol. 16, no. 7, pp. 223-302, 1988. 
(431 L. 0. Chua and G. N. Lin, “Canonical realization of Chua’s circuit 

family,” IEEE Trans. Circuits Syst., vol. 37, no. 7, pp. 885-902, 1990. 

Michael Peter Kennedy, for a photo and biography, please turn to page 656 
of this issue of this TRANSACTIONS. 


