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Mixed-mode oscillations and slow manifolds in the self-coupled
FitzHugh-Nagumo system

Mathieu Desroches,a� Bernd Krauskopf, and Hinke M. Osinga
Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics,
University of Bristol, Queen’s Building, Bristol BS8 1TR, United Kingdom

�Received 17 August 2007; accepted 24 September 2007; published online 27 March 2008�

We investigate the organization of mixed-mode oscillations in the self-coupled FitzHugh-Nagumo
system. These types of oscillations can be explained as a combination of relaxation oscillations and
small-amplitude oscillations controlled by canard solutions that are associated with a folded singu-
larity on a critical manifold. The self-coupled FitzHugh-Nagumo system has a cubic critical mani-
fold for a range of parameters, and an associated folded singularity of node-type. Hence, there exist
corresponding attracting and repelling slow manifolds that intersect in canard solutions. We present
a general technique for the computation of two-dimensional slow manifolds �smooth surfaces�. It is
based on a boundary value problem approach where the manifolds are computed as one-parameter
families of orbit segments. Visualization of the computed surfaces gives unprecedented insight into
the geometry of the system. In particular, our techniques allow us to find and visualize canard
solutions as the intersection curves of the attracting and repelling slow manifolds. © 2008 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2799471�

A mixed-mode oscillation (MMO) is an oscillatory cycle
formed by several small-amplitude oscillations followed
by a number of large excursions. While frequently ob-
served in both experiments and models of chemical or
biological systems,1 the precise mechanism that generates
such MMOs in slow-fast systems has only recently been
explained; see, for example, Refs. 2–6, and other contri-
butions in this focus issue. The main ingredients for the
occurrence of MMOs are the presence of (at least) one
fast variable, two slow variables, and a folded critical
manifold. The dynamics in such a system consists of slow
motion on an attracting slow manifold, followed by a fast
jump to another attracting slow manifold. This classical
behavior of a relaxation oscillation accounts for the large
excursions of a MMO. The small-amplitude oscillations
of the MMO, on the other hand, are organized by so-
called canard solutions, which are intersection curves of
attracting and repelling slow manifolds. In this paper we
showcase a technique to compute attracting and repelling
slow manifolds. Specifically, we explain how each slow
manifold can be approximated as the one-parameter so-
lution family of a two-point boundary value problem. By
concatenation of two such boundary value problems, we
are able to identify the canard solutions that separate the
slow manifolds into regions that correspond to different
types of MMOs. We demonstrate our method by comput-
ing slow manifolds and canard solutions in the self-
coupled FitzHugh-Nagumo system—a model that arises
in the study of synchronization in a network of neurons.

I. INTRODUCTION

Throughout, we consider the self-coupled FitzHugh-
Nagumo system in the form

v� = h −
v3 − v + 1

2
− �sv, h� = − ��2h + 2.6v� ,

�1�
s� = �H�v��1 − s� − ��s .

System �1� is a simplified model for the study of synchroni-
zation in a network of Hodgkin-Huxley neurons; see also
Ref. 3. In particular, this model represents only one neuron
with self-coupling, which is equivalent to a network of
coupled neurons. The variable v represents the voltage po-
tential of the neuron membrane, h is the inactivation of the
sodium channels, and s is the synaptic coupling in the net-
work. The parameter � is the coupling strength, � is the
activation rate, and � and � determine the decay rates of
inactivation h and the synapse s. By means of the Heaviside
function H�v�, system �1� incorporates the feature that s var-
ies slowly when v�0 �the silent phase�, while s is fast when
v�0 �the active phase�. Note that the parameter � only plays
a role when the system is in the active phase. Indeed, � acts
as the singular perturbation parameter and both h and the
deactivation of s evolve on a much slower time scale than the
voltage potential v.

In the absence of self-coupling ��=0� the neuron fires an
action potential at a rate that is about 10 times faster than in
the presence of self-coupling. That is, the introduction of the
synaptic coupling with a particular strength ��0 substan-
tially slows down the firing rate, and small-amplitude oscil-
lations can be observed in between the action potentials; see
Fig. 1�a� where the frequency of the action potentials is only
about 5 Hz.a�Electronic mail: M.Desroches@bristol.ac.uk.
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The self-coupled FitzHugh-Nagumo system was used by
Wechselberger3 to illustrate how canards organize the behav-
ior in a real application. His analysis focused on how the
canard solutions divide the attracting slow manifold into sec-
tors that correspond to an increasing number of small-
amplitude oscillations. We take this analysis further by com-
puting the actual attracting and repelling slow manifolds.
While similar in spirit to the work of Wechselberger3 and
Milik et al.,2 our computational technique is based on the
continuation of two-point boundary value problems,7 which
is more powerful and versatile than integration methods used
previously. Furthermore, within our setup we can calculate
the canard solutions directly as the intersection of an attract-
ing and a repelling slow manifold. This offers the possibility
of following canard solutions when a parameter of the sys-
tem is varied. The method presented here has been used in
Ref. 8 to compute slow manifolds and associated canard so-
lutions for a three-dimensional normal form of a slow-fast
system with a folded node; we refer to Refs. 3 and 9–11 for
details on different normal forms of the folded-node singu-
larity. In the normal-form setting a start solution for the com-
putation is known analytically. The self-coupled FitzHugh-
Nagumo system studied here also has a folded node, but it is
not in normal form and no start solution is known. The aim
of this paper is to show how one can compute the slow
manifold in this more general application setting.

This paper is organized as follows: In the next section
we present relevant properties of Eq. �1� in the silent phase in
between the action potentials, where we closely follow Ref.
3. Section II explains how a two-point boundary value prob-

lem can be set up for the computation of the attracting and
repelling slow manifolds. We also discuss how the concat-
enation of two such boundary value problems can be used
for finding canard solutions. We end with a discussion in
Sec. III.

II. PROPERTIES OF THE SELF-COUPLED
FITZHUGH-NAGUMO SYSTEM

The occurrence of MMOs in the self-coupled FitzHugh-
Nagumo system is organized by the dynamics of the silent
phase in between the action potentials. This phase can be
defined as v�0; compare also Fig. 1�a�. For v�0 the Heavi-
side function H�v��0 in system �1�, so that we only need to
study the silent-phase system

v� = h −
v3 − v + 1

2
− �sv ,

�2�
h� = − ��2h + 2.6v�, s� = − ��s .

We consider the self-coupled FitzHugh-Nagumo system �1�
and the silent-phase system �2� for fixed �=0.5, �=0.015,
and �=0.565. The dynamics of Eq. �2� gives rise to MMOs
of Eq. �1�, which are periodic orbits that also involve the
active phase where v�0.

System �2� has the natural formulation of a three-
dimensional slow-fast system with two slow variables h and
s and one fast variable v. There is a wealth of literature on
the dynamics of slow-fast systems of this type; we refer to
Refs. 4 and 9–18 for an entry into the literature. An impor-

FIG. 1. �Color� The geometry of the MMO of system
�1� for �=0.035, where �=0.5, �=0.015, and �
=0.565. Panel �a� shows its time evolution of the volt-
age potential v. Panel �b� shows the MMO periodic
orbit �5 projected onto the �h ,v�-plane, together with
six canard solutions �labelled �3–�8� of the silent-phase
system �2�. Panel �c� shows �5 with the associated at-
tracting slow manifold S�

a �red surface� and repelling
slow manifold S�

r �blue surface� of Eq. �2�, both calcu-
lated up to a plane through the folded node; also shown
are the two neighboring canard solutions �4 and �5.
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tant object is the critical manifold S for �=0, which for a
three-dimensional system with two slow variables is a sur-
face. For system �2�, the critical manifold S is implicitly
defined by the equation v�= f�v ,h ,s�=0, which gives

S ª ��v,h,s� � R3�h =
v3 + �2�s − 1�v + 1

2
� . �3�

The surface S has a fold �with respect to the fast variable v�
along the curve

F ª ��v,h,s� � R3�h =
1

2
− v3,s =

1 − 3v2

2�
� . �4�

The fold curve F has a cusp point at �v ,h ,s�= �0, 1
2 , 1

2�
� and

divides the surface S into an attracting and a repelling sheet.
For suitable � the critical manifold S is folded in the physi-
cally realistic range s� �0,1� and consists there locally of
two attracting and one repelling sheets. �Note that one of the
attracting sheets lies outside the region of interest, namely, it
exists for v�0.�

The critical manifold S is normally hyperbolic every-
where except in the vicinity of the fold curve F. So accord-
ing to Fenichel theory,19 away from F the attracting and re-
pelling sheets of S perturb smoothly to invariant attracting
and repelling manifolds for ��0, respectively. This means
that system �2� also has attracting and repelling slow mani-
folds in the range s� �0,1�. The dynamics for small � is,
therefore, as follows. A trajectory generated by system �2�
that starts at an arbitrary point on the �admissible� attracting
sheet of S will follow this sheet until it reaches F. At F the
trajectory will typically jump, that is, move away from S; the
trajectory will then leave the admissible space v�0, so that
the further dynamics is dictated by system �1�. However, the
trajectory may actually cross the fold curve and continue for
some time near the repelling sheet of S; such a trajectory is
called a canard solution.

In order to study this behavior, it is customary to deter-
mine the so-called desingularized reduced system of system
�2�. Rather than expressing the slow flow in terms of the
slow variables h and s, we consider the flow in terms of v
and s and think of h as a function of v and s. A rescaling of
time with the factor −�� /�v�f�v ,h ,s� leads to the desingular-
ized reduced system

v̇ = − v3 + 1.6v − �2 + ���sv − 1,

�5�

ṡ = − �s
3v2 − 1 + 2�s

2
.

The dynamics of �5� determines the dynamics on S; we
can project the phase portrait of system �5� onto S, but then
time must be reversed on the repelling sheet of S where
�� /�v�f�v ,h ,s��0. In particular, an equilibrium of system
�5� that lies on the fold curve F is called a folded singularity,
but note that a folded singularity is not an equilibrium of the
flow on S. For all ��0 system �5� has a node on F with v
�0, which is a folded node pfn of Eq. �1�; see Refs. 3 and
9–11 for more information on folded nodes. For our choice
of parameters pfn	�−0.4900,0.6176,0.2797�. As a result
there are trajectories on the attracting sheet of S that con-

verge to the folded node in finite time and then pass through
it with nonzero speed �hence following the repelling sheet of
S for some time�; these trajectories are called singular
canards.9

As is discussed in Ref. 3, the folded node pfn on S and
the corresponding singular canard solutions generate actual
canard solutions for system �2�, which in turn generate
MMOs for the self-coupled FitzHugh-Nagumo system �1�.
Figure 1 gives an idea of what a MMO periodic orbit looks
like for a particular choice of parameters. Panel �a� shows the
time evolution of the voltage v of the MMO of system �1� for
�=0.035. In this case there are five small-amplitude oscilla-
tions in between each large spike of the action potential,
which means that the MMO is of type 15.20 Figure 1�b�
shows this MMO periodic orbit, labelled �5, in projection
onto the �h ,v�-plane. Also shown are projections of some of
the canards �labelled �3 to �8� of system �2�. Figure 1�c�
shows the three-dimensional view of �5 with the attracting
�denoted S�

a� and repelling �denoted S�
r� slow manifolds; here

only the canards �4 and �5 are shown. Notice how the ca-
nards rotate around the fold curve F; the number of rotations
is represented in their labelling.

Figure 1 shows that the silent phase of the MMO is
organized by the canards; compare with Ref. 3, Fig. 25.
Since the MMO periodic orbit �5 enters the attracting slow
manifold in between canards �4 and �5, the number of small-
amplitude oscillations is five. The MMO follows the repel-
ling slow manifold S�

r for a short while before it makes a
large-amplitude excursion into the region of v�0.

The curve labelled Lr in Figs. 1�b� and 1�c� represents
one of the boundary conditions in our calculation of the ca-
nards and the repelling slow manifold S�

r . How these calcu-
lations are performed is explained next.

III. COMPUTING THE SLOW MANIFOLDS

Our numerical method is based on the idea that a part of
interest of a two-dimensional manifold can be represented as
a family of orbit segments. This family can be computed by
continuation of the solutions of a suitable two-point bound-
ary value problem, for example with the package AUTO.21,22

This general approach is quite powerful; see Ref. 23 for
more examples of its use. The key is to set up and follow
solutions to the right kind of boundary value problem.

To compute S�
a and S�

r we make use of the normal hyper-
bolicity of the critical manifold S.19 Namely, for small �
�0 the slow manifolds S�

a and S�
r are smooth perturbations of

the critical manifold S, as long as one stays away from the
fold curve F. In other words, sufficiently far away from F the
surfaces S�

a and S�
r are approximated well by S, where the

error goes to zero for �→0. Therefore, we compute S�
a �and

S�
r� as a one-parameter family of orbit segments of Eq. �2�

where one end point varies along a curve on the critical
manifold S that lies at a sufficient distance from F. To obtain
a family of well-posed boundary value problems, the other
end point is required to lie in a suitable plane transverse to
the flow near F. As is explained below, this plane is chosen
such that the resulting surface covers a particular region of
interest.

015107-3 MMOs in the FitzHugh-Nagumo system Chaos 18, 015107 �2008�
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A. Computation of the attracting slow manifold S�
a

As is common in the field of numerical continuation, we
consider a vector field of the form

u̇ = Tg�u� , �6�

where the �free� parameter T is the actual integration time. In
other words, the total integration time of any solution of Eq.
�6� is rescaled to 1. For the self-coupled FitzHugh-Nagumo
system u= �v ,h ,s� and g is the right-hand side of system �2�.
The idea is to continue solutions of system �6� subject to
suitably chosen boundary conditions at u�0� and u�1�, which
can be achieved with numerical packages such as AUTO; see,
for example, Ref. 7 for more background information on
numerical continuation.

To ensure that solutions of Eq. �6� lie �in good approxi-
mation� on the attracting slow manifold S�

a we require that
the start point u�0� lies on a curve La on S that is sufficiently
far away from F. Note that the best choice for La�S would
run “parallel” to F, meaning that it lies at an approximately
uniformly large distance from F. Since S�

a is unbounded, La

can be chosen as far from F as one wishes. In the computa-
tion of S�

a we chose the boundary condition

u�0� � La
ª S � 
h = − 6.0� . �7�

To ensure that we compute the relevant part of S�
a near the

folded node pfn, we restrict the end point u�1� to a plane 	
through pfn�F and transverse to the flow. A choice that
works in general is to take the tangent vector of F at pfn as
the normal of 	. However, only transversality is required and
for system �2� a satisfactory choice is the plane of constant s,
which gives the boundary condition

u�1� � 	 ª 
�v,h,s� � R3�s = 0.2797�� . �8�

The solution family of the two-point boundary value prob-
lems �6�–�8�, where the integration time T is a single free
parameter, forms a good approximation of S�

a between La and
	. We compute this solution family with the continuation
and collocation routines of the package AUTO. A particular
strength of AUTO is that the step length in the continuation is
determined in terms of the L2-norm between solutions.
Therefore, the computed orbit segments are not only numeri-
cally accurate but also nicely spaced on the resulting surface,
which is a distinct advantage for the rendering.

However, before S�
a can be computed one must first con-

struct a solution of Eqs. �6�–�8�. To this end, we use a ho-
motopy method with two steps. We first consider the family
of orbit segments that solve Eq. �6� subject to boundary con-
ditions �8� and

u�0� � F . �9�

Note that the trivial orbit segment given by the folded node,
that is, 
pfn �0
 t
1�, is a solution of Eq. �6� subject to Eqs.
�8� and �9� for T=0. Starting from this trivial orbit, continu-
ation in T grows the orbit where the endpoint is restricted to
the fold curve F. This continuation is stopped when u�0� is at
some predetermined distance from pfn, which is detected by
a user-defined function in AUTO. Specifically, our computa-
tion was set to stop when

u�0� � 	̃a
ª 
�v,h,s� � R3�s = 0.6�� . �10�

We then switch to the second step of the homotopy, which
aims to move u�0��S away from F �approximately� parallel
to 	. Hence, we introduce the boundary condition

u�0� � L̃a = S � 	̃a, �11�

and continue solutions of Eq. �6� subject to Eqs. �8� and �11�.
The continuation is stopped when La is reached, which is
again detected by a user-defined function in AUTO.

Figure 2�a� illustrates the continuations that are per-
formed to obtain the first solution of Eqs. �6�–�8�. The dark

red curve is the orbit segment from L̃a�F to the plane 	 as
obtained at the end of the first homotopy step. This orbit is

then continued while u�0� is restricted to L̃a until La

=S� 
h=−6.0� is reached. The red curves in Fig. 2�a� are a
selection of orbit segments, shown near the fold curve F, that
are computed during this second homotopy step. Note that
these orbit segments do not form a good approximation of

S�
a. However, as u�0� moves along L̃a�S further away from

F �in the direction of decreasing h�, the orbit segment

u�t� �0
 t
1� lies closer and closer to S�

a. The last of these
orbits satisfies u�0��La and serves as the start solution of
the actual computation of S�

a from Eqs. �6�–�8�. The attract-
ing slow manifold S�

a �red surface� in Fig. 1�c� was rendered
from a total of 2700 orbit segments. Throughout the different
steps we used a mesh of 400 mesh intervals �NTST=100 and
NCOL=4� for each orbit segment.

B. Computation of the repelling slow manifold S�
r

The repelling slow manifold S�
r is computed in much the

same way as S�
a. Namely, we consider negative T in Eq. �6�,

which effectively reverses the direction of the flow. How-
ever, there is an additional difficulty in that the repelling
sheet of S is bounded by the fold curve. Therefore, the pos-
sibility of moving away from F by changing s is limited by
the fact that one simultaneously approaches the other branch
of F �with respect to the cusp point�. This problem must be
expected in general, namely it occurs for any system whose
slow manifold is more complicated than a simple parabolic
cylinder. Indeed the cusp surface considered here is a classic
case. The best strategy is to restrict the begin point u�0� to a
curve Lr that is “furthest away” from the respective two
bounding fold curves.

For the slow manifold S given by Eq. �3�, one finds from
Eq. �4� that the fold curve F is symmetric with respect to v
=0, so that the best choice for the boundary condition is

u�0� � Lr
ª S � 
v = 0.0� . �12�

The end point u�1� is again restricted to lie in the section 	
by imposing boundary condition �8�. In other words, S�

r can
be computed as the family of orbit segments that are solu-
tions of Eq. �6� subject to Eqs. �8� and �12�.

As before, a first solution can be constructed in two ho-
motopy steps. Namely, we again continue the boundary value
problem �6� with boundary conditions �8� and �9� from the

015107-4 Desroches, Krauskopf, and Osinga Chaos 18, 015107 �2008�
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trivial orbit segment 
pfn �0
 t
1� with T=0, but this time
in the direction of negative T. We stop the continuation,
when

u�0� � 	̃r
ª 
�v,h,s� � R3�s = 0.05�� , �13�

as detected by a user-defined function in AUTO. We then
switch to the second continuation run, where we solve sys-
tem �6� subject to boundary conditions �8� and

u�0� � L̃r
ª S � 	̃r. �14�

The continuation now finds solution segments with u�0�
� L̃r that lie increasingly further away from F, and it stops
when Lr is reached.

Figure 2�b� illustrates these continuations in the compu-

tation of S�
r . The cyan curve is the orbit segment from L̃r�F

to 	, which is then continued in the second homotopy step

while u�0� is restricted to L̃r until Lr=S� 
v=0.0� is reached.

This continuation gives rise to the blue orbit segments in Fig.
2�b�, the last of which is the start solution for the computa-
tion of S�

r with boundary conditions �8� and �12�. The result-
ing image of the repelling slow manifold S�

r is shown in Fig.
1�c� �blue surface�. As for S�

a, we used 400 mesh intervals for
the 1200 orbit segments that make up the surface.

C. Computation of canard solutions

The advantage of computing S�
a and S�

r up to the plane 	
is that we can easily identify the canard solutions. Each �ge-
neric� canard solution �i corresponds to an isolated intersec-
tion point of S�

a�	 and S�
r �	, as is illustrated in Fig. 3. The

number of canard solutions can be determined in the normal
form by the ratio of eigenvalues � of the folded node pfn. For
the parameters of Eq. �2� as chosen �	55.5, which means
that we expect to find 29 canard solutions �2 primary canards
and 27 secondary canards�; see Refs. 3 and 8 for details.

FIG. 2. �Color� Illustration of the ho-
motopy steps needed to generate a
suitable first orbit segment to start the
computation of the attracting slow
manifold S�

a �a� and the repelling slow
manifold S�

r �b� of Eq. �2� for �=0.5,
�=0.015, and �=0.565; also shown
are the critical manifold S and its fold
curve F. The dark red orbit segment in
panel �a� and the cyan orbit segment in
panel �b� are obtained in the first ho-

motopy step and connect L̃a�F and

L̃r�F, respectively, with the section
	. The red and blue orbit segments are
generated during the second homotopy
step; the last of them is the sought-
after first orbit segment from La and
Lr, respectively, to the section 	.
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In our present setup, a canard solution is represented as a
solution u of system �6� subject to the boundary conditions

u�0� � La and u�1� � Lr. �15�

A solution of the boundary value problem �6� subject to Eq.
�15� can be found as follows. We detect an orbit segment ua

on S�
a and an orbit segment ur on S�

r that almost match up in
the plane 	, meaning that ua�0�	ur�0��	. From this pair
of orbits we generate the concatenation of ua with the reverse
of ur �which has positive rather than negative integration
time�. The resulting orbit segment is then rescaled back to
the time interval �0,1�, so that its integration time T is sim-
ply the sum of the two �now both positive� integration times
for ua and ur. Provided �ua�0�−ur�0�� is sufficiently small,
the application of a Newton step in AUTO generates a solu-
tion of Eq. �6� subject to Eq. �15� that represents the respec-
tive canard solution. The canard solution can then be contin-
ued in a system parameter. In this way, it is possible to obtain
information about how the canard solutions change with pa-

rameters; we refer to Ref. 8 for more details. Here we found
the six canard solutions �3–�8 that are shown in Fig. 1�b�.
They were constructed by considering the respective inter-
section points of the curves S�

a�	 and S�
r �	 that are shown

in Fig. 3. How selected canard solutions lie on S�
a and S�

r is
illustrated in Figs. 1�c� and 4.

D. Visualizing the interaction of S�
a and S�

r

In Fig. 1 we computed S�
a and S�

r up to the plane 	 that
contains the folded node pfn	�−0.4900,0.6176,0.2797�. In-
deed, one can imagine that the dynamics in the silent-phase
system �2� takes place on the attracting slow manifold S�

a

before pfn is reached, and on the repelling slow manifold S�
r

from then on. However, to get a better idea of the geometry
of the slow manifolds, in particular of how S�

a and S�
r inter-

sect, both manifolds need to be computed past the plane 	.
This is straightforward in our boundary value problem setup.

Namely, we consider two new planes transverse to the
flow close to the fold curve F. The most convenient choice
for Eq. �2� is to take planes of the form

	� ª 
�v,h,s� � R3�s = ��� , �16�

which are parallel to 	=	0.2797. Specifically, we replace
boundary condition �8� by

u�1� � 	a
ª 	0.15 �17�

for the calculation of S�
a, and by

u�1� � 	r
ª 	0.40 �18�

for the calculation of S�
r .

A start solution on S�
a that satisfies Eq. �17� can be ob-

tained from an orbit segment u from La to 	 by continuation
in T and the parameter � of the section 	�, where we start
from �=0.2797. Here we keep u�0� fixed and require that
u�1��	�. This continuation is stopped when 	a is reached,
which is detected by a user-defined function in AUTO. Simi-
larly, an orbit segment on S�

r can be continued up to 	r to
obtain a start solution that satisfies Eq. �18�.

FIG. 3. �Color� The curves S�
a�	 and S�

r �	 in the plane 	 intersect at
isolated points that correspond to the canard solutions of system �2�. The
image is for �=0.5, �=0.015, and �=0.565 and the “outermost” canard
solutions �3–�8 are color coded as in Fig. 1.

FIG. 4. �Color� The attracting slow
manifold S�

a and the repelling slow
manifold S�

r of system �2� for �=0.5,
�=0.015, and �=0.565, shown locally
between the sections 	a of Eq. �17�
and 	r of Eq. �18� with the three “out-
ermost” canard solutions �6–�8.
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The computation of S�
a and S�

r can now be performed as
before. The two slow manifolds are shown in Fig. 4, where
we clipped the surfaces so that only the part in between 	r

and 	a is visualized. This kind of representation is designed
to give good geometric insight into how the two manifolds
intersect near pfn and give rise to canard solutions. The three
canard solutions �6, �7, and �8 are shown in Fig. 4.

The silent-phase system �2� and, hence, the geometry of
its slow manifolds, does not depend on the activation rate �.
Rather, � controls the relaxation oscillation during the active
phase and, in particular, where exactly the orbit returns back
to the silent phase. As a result, varying � causes the resulting
MMO to move relative to the canard solutions on S�

a, which
means that the number of small oscillations can be adjusted
by changing �.

This phenomenon is illustrated in Fig. 5, where we show
the computed slow manifolds S�

a and S�
r of system �2� subject

to boundary conditions �17� and �18�, together with the ca-
nard solutions �5–�7. Also shown are the two MMO periodic
orbits �6 and �7 of type 16 and 17 of system �1� for �
=0.043 and �=0.048, respectively. Figure 5�c� clearly shows
how the MMO �k enters the attracting slow manifold �after
the excursion corresponding to the active phase� in between
the canard orbits �k−1 and �k, and the orbit stays in this region
during the whole silent phase. This geometry explains the
different types of MMOs and their dependence on � in the
self-coupled FitzHugh-Nagumo system �1�.

IV. DISCUSSION

We presented the technique of computing slow mani-
folds and corresponding canard solutions in slow-fast sys-
tems by means of solving suitable two-point boundary value
problems. Specifically, two-dimensional attracting and repel-
ling slow manifolds can be found in this way as a family of

orbit segments starting on a curve on the critical manifold
and ending in a prescribed section. We showed how an initial
solution of this sort can be generated by specified continua-
tion runs. We used the package AUTO

21,22 for solving the
BVPs, that is, their solutions are found with the method of
collocation as piecewise polynomials on a variable mesh.
This provides global accuracy along orbit segments, which is
a distinct advantage over shooting methods in the context of
slow-fast systems.

We illustrated our method with the example of the self-
coupled FitzHugh-Nagumo system, where we considered the
geometry of the slow manifold as given by the silent-phase
system. It is governed by a folded-node singularity that gives
rise to canard solutions, as was previously discussed in Ref.
3. The new element here is that we brought out this dynamics
by computing the attracting and repelling slow manifolds, as
well as the canard solutions. In this way, we visualized how
the slow manifolds are divided by the canard solutions into
regions that correspond to different types of MMOs when
they are subject to the active phase of the system.

Overall, we demonstrated how the calculation of the
slow manifolds of the self-coupled FitzHugh-Nagumo sys-
tem can lead to geometrical insight into the dynamics of a
slow-fast system arising in an application. A more detailed
bifurcation study of canard solutions remains an interesting
topic beyond the scope of this paper. In the future we plan to
apply our technique also to other slow-fast models with two-
dimensional slow manifolds. Indeed there are many such ex-
amples, including models of neuron dynamics5,24 and chemi-
cal systems.2,20,25
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FIG. 5. �Color� A larger view of the slow manifolds S�
a
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r of Fig. 4 and the canard solutions �5–�7. Panels

�a� and �b� show the MMOs of system �1� for �
=0.043 and �=0.048, respectively. Panel �c� shows the
corresponding MMO periodic orbits �6 and �7 relative
to S�

a, S�
r and the canard solutions �5–�7; compare also

with Fig. 1.
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