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Abstract. In this work, we investigate the dynamics of a model of
4-neurons based hyperchaotic Hopfield neural network (HHNN) with
a unique unstable node as a fixed point. The basic properties of the
model including symmetry, dissipation, and condition of the existence
of an attractor are explored. Our numerical simulations highlight sev-
eral complex phenomena such as periodic orbits, quasi-periodic orbits,
and chaotic and hyperchaotic orbits. More interestingly, it has been
revealed several sets of synaptic weights matrix for which the HHNN
studied display multiple coexisting attractors including two, three and
four symmetric and disconnected attractors. Both hysteretic dynamics
and parallel bifurcation branches justify the presence of these various
coexisting attractors. Basins of attraction with the riddle structure of
some of the coexisting attractors have been computed showing different
regions in which each solution can be captured. Finally, PSpice simula-
tions are used to further support the results of our previous analyses.

1 Introduction

Dynamical systems theory is a powerful tool to explain and predict complex dynam-
ics in applications by analyzing appropriate mathematical models [1]. Indeed math-
ematical models are used in natural and engineering disciplines, as well as in social
sciences. A mathematical model may help to explain a system’s behavior, to study
the effects of different components, and to make predictions. Several mathematical
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models are found in the literature including, diseases model (Cancer and HIV/AIDS)
[2], electrical machine model, atmospheric model [3,4], satellite model [5], financial
model [6], calcium oscillation model [7], neurons model [8–10] and laser model
[11–13] just to name few. Many artificial neural networks have been presented to
simulate the chaotic or hyperchaotic dynamics of the brain. Recently, some numer-
ical and experimental investigations of chaotic dynamics in Hopfield networks have
been addressed [14–24]. Results revealed some striking behaviors including chaotic
orbits with both single scroll and double scroll, quasi-periodic orbits, hyperchaotic
orbits, transient behaviors, antimonotonicity, and coexistence of bifurcations with
multiple stable states [9,10,14–18]. This latter phenomenon is widely known as mul-
tistability; means the coexistence of several types of attractors in a given system for
the same set of parameters, starting from different initial conditions. This widespread
phenomenon has already been found in several classes of dynamical systems such as
chemical, mechanical, electrical, ecological biological systems and so on [14–24]. For
example, Lai et al. [25] introduced a novel three-dimensional chaotic system with
three nonlinearities. A salient feature of that novel system was its ability to dis-
play the coexistence of multiple attractors caused by different initial values. With
the change of parameters, the authors found that the system was able to experience
mono-stability, bi-stability, mono-periodicity, bi-periodicity, one strange attractor,
and two coexisting strange attractors. The complex dynamic behaviors of the system
were revealed by analyzing the corresponding equilibria and using the numerical sim-
ulation method. Besides, an electronic circuit was given for implementing the chaotic
attractors of the system. Using the introduced chaotic system, the S-Box was devel-
oped for cryptographic operations. Similar types of analyses, as well as application,
have been done by Lai et al. [26] during the investigation of an extended Lü system.
Recently, Lai et al. [27] have reported a method for constructing multiple coexisting
attractors from a chaotic system. Exploiting that technique, a new four-dimensional
chaotic system with only one equilibrium and two coexisting strange attractors was
established. Also, they show that the core of their method was to batch replicate
the attractor of the system in phase space via generating multiple invariant sets and
the generation of invariant sets depends on the equilibria, which can be extended
by using some simple functions with multiple zeros. Very recently the same research
group [28] constructed an extremely simple chaotic system with infinitely many coex-
isting chaotic attractors. The phenomenon of coexisting attractors of the new system
was numerically investigated. Finally, circuit and microcontroller-based implementa-
tion of the system was presented as well.

Concerning the coexistence of stable states in neuronal models particularly in
Hopfield neural networks, several works have already been proposed [14,15,23,24].
Bao and collaborators [14] found the coexistence of three different asymmetric attrac-
tors with different shapes in a model of HNN based on hyperbolic-type memris-
tor. Respectively, the authors also found the coexistence of up to four disconnected
attractors in a simplified 3D HNN [15]. In the investigations of Bao, results have
been perfectly supported via various experimental studies. Njitacke and colleagues
[23,24], have highlighted the coexistence of up to six disconnected stable states and
the phenomenon of antimonotonicity in several models of HNN. Among these neu-
ronal models, some were built with nonlinear synaptic weights [14,23,24] while oth-
ers were built with linear synaptic weights [15,29,30]. Very recently Bao et al. have
explored the dynamical effects of neuron activation gradient on the dynamics of a
Hopfield neural network through numerical analyses and hardware experiments [29].
Their results demonstrate that complex dynamical behaviors associated with the neu-
ron activation gradient emerge in the HNN model, including coexisting limit cycle
oscillations, coexisting chaotic spiral attractors, chaotic double scrolls, forward and
reverse period-doubling cascades, and crisis scenarios.
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From these aforementioned works, several complex behaviors such as antimono-
tonicity and coexistence of bifurcations with multiple stable states have been found
during the investigations of a chaotic HNN. However such rich dynamical behaviors
have not yet been revealed in hyperchaotic one thus, it deserves to be explored. To
shed more light on that thinking, we address the nonlinear dynamics of a hyperchaotic
Hopfield neural network with linear synaptic weight matrix based on the following
objectives:

(a) To carry out a systematic analysis of HHNN under investigation and explain the
chaos and hyperchaotic mechanisms;

(b) To define the set of the synaptic weight matrices in which the model experiences
multiple coexisting chaotic and hyperchaotic attractors, hysteretic dynamics and
parallel bifurcations;

(c) To carry out a series of PSpice simulations of the model of HHNN to support the
theoretical predictions.

Some interests of this study are related to the fact that Hopfield neural networks can
model brain dynamics [31], they can be applied in stereo matching [32] or associative
memory [33]. Indeed there are several works focused on the dynamics of the Hopfield
neural network with various types of coexisting bifurcations. However, these various
works are focused only on the chaotic HNN. Then is no case of coexisting attractors
addressed on HHNN hence the interest of this work. Besides the coexisting attractors
found in this work are all symmetric in contrast to the previous works addressed in
HNN where the coexisting attractors appeared in symmetric pairs [14,15,23,24,28].

The rest of this scientific contribution is structured as follows: In Section 2, the
presentation and description of the HHNN are performed. Analyses are carried out in
terms of dissipation analysis with the condition of the existence of attractors and the
analysis of the stability of the unique stationary point. In section 3, Traditional anal-
ysis tools are exploited to highlight various regular and irregular behaviors including
the coexistence of multiple stable states. In Section 4, a series of PSpice explorations
are carried out to support our previous analysis. Finally, some concluding remarks
and proposals for future work are provided in Section 5.

2 Description of the HHNN

2.1 Mathematical expression of the model of HHNN

Chaotic or hyperchaotic Hopfield neural networks are generally used to describe some
brain process such the context of learning and memory. In such type of neuron, the
circuit equation can be described as

ẋi = −cixi +
n∑

j=1

wij tanh (xj) + Ii. (1)

In equation (1), xi is a state variable of the neuron ci is the membrane resistance
between the inside and outside of the neuron, Ii is the input bias current. The matrix
W = wij is a n × n synaptic weight matrix showing the strength of connections
between neurons [14–18]. The tanh (xj) is the smooth nonlinear activation function
indicating the voltage input from the j-th neuron. In this contribution, we consider
that, Ii = 0 and n = 4. Based on these various hypotheses, we investigate the
hyperchaotic Hopfield neural networks with the topological connection depicted in
Figure 1. From this general topological connection, the synaptic weight matrix of
equation (1) is proposed.
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Fig. 1. Topological connection of the hyper-chaotic Hopfield neural network (HHNN) in
(a); the detail diagram of a neuron in (b).

W =

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

 =

 1 0.5 −3 −1
0 w22 3 0
3 −3 w33 0

100 0 0 w44

 (2a)

c =
[

1 1 1 100
]T
. (2b)

From the above considerations, the smooth nonlinear fourth order differential equa-
tions describing the dynamics of the proposed 4-neurons based HHNN are taken in
a dimensionless form as:

ẋ1 = −x1 + tanh (x1) + 0.5 tanh (x2)− 3 tanh (x3)− tanh (x4)
ẋ2 = −x2 + w22 tanh (x2) + 3tanh (x3)
ẋ3 = −x3 + 3 tanh (x1)− 3 tanh (x2) + w33 tanh (x3)
ẋ4 = −100x4 + 100 tanh (x1) + w44 tanh (x4)

. (3)

Referring to equation (3), there are three synaptic weights (w22, w33 and w44) from
which the behavior of the HHNN model can be investigated.
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2.2 Dissipation, condition of existence of attractors and symmetry

The volume contraction rate is the main quantity used to evaluate the dissipation
property of a given dynamical system [34,35]. System (3) can be written in the
following vector notation

dϕ

dt
= f (ϕ) =

 f1 (x1, x2, x3, x4)
f2 (x1, x2, x3, x4)
f3 (x1, x2, x3, x4)
f4 (x1, x2, x3, x4)

 (4)

with
f1 (x1, x2, x3, x4) = −x1 + tanh (x1) + 0.5 tanh (x2)− 3 tanh (x3)− tanh (x4)

f2 (x1, x2, x3, x4) = −x2 + w22 tanh (x2) + 3tanh (x3)

f3 (x1, x2, x3, x4) = −x3 + 3 tanh (x1)− 3 tanh (x2) + w33 tanh (x3)

f4 (x1, x2, x3, x4) = −100x4 + 100 tanh (x1) + w44 tanh (x4)

. (5)

Now considering any space Ω in R4 with a smooth boundary, satisfying Ω (t) = ΦL (t)
where ΦL (t) is the flow of f . Considering V (t) denotes the volume of Ω (t). Using
Liouville’s theorem, we obtain:

dV

dt
=
∫

Ω(t)

(∇ · f)dx1dx2dx3dx4 (6)

where (∇ · f) represents the volume contraction rate. It can be easily checked that,
this volume is equal:

∇ · f = −103 + w11sech2 (x̄1) + w22sech2 (x̄2) + w33sech2 (x̄3) + w44sech2 (x̄4) (7)

since that −1 < tanh (x̄i) < 1 for all xi (i = 1, . . . , 4) with an appropriate choice
of synaptic weights w11, w22 and w33 our model can be dissipative and support
attractors. We recall that the dissipation property of a system gives the presence of
bounded global attractor and an analytical indication of the global attractor in the
phase space [34,35] The confinement of the neuronal model can be supported using
the approach described in [36,37]. A Lyapunov function is introduced as

V (x1, x2, x3, x4) =
1
2
x2

1 +
1
2
x2

2 +
1
2
x2

3 +
1
2
x2

4. (8)

The corresponding time derivative of the Lyapunov function candidate is given as

V̇ (x1, x2, x3, x4) = x1ẋ1 + x2ẋ2 + x3ẋ3 + x4ẋ4

= −
(
x2

1 + x2
2 + x2

3 + 100x2
4

)
+ tanh (x1) (x1 + 3x3 + 100x4)

+ tanh (x2) (0.5x1 + w22x2 − 3x3) + tanh (x3)
× (−3x1 + 3x2 + w33x3) + tanh (x4) (−x1 + w44x4)

(9)

considering that

v (x1, x2, x3, x4) = tanh (x1) (x1 + 3x3 + 100x4) + tanh (x2) (0.5x1 + w22x2 − 3x3)
+ tanh (x3) (−3x1 + 3x2 + w33x3) + tanh (x4) (−x1 + w44x4)

.

(10)
Equation (9) can be then transformed as

V̇ = −αV (x1, x2, x3, x4) + v (x1, x2, x3, x4) (11)
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where α is a positive constant. Based on the fact that, tanh (xi) < 1 for all
xi (i = 1, . . . , 4) thus, equation (10) can be reduced as

v (x1, x2, x3, x4) ≤ |tanh (x1) (x1 + 3x3 + 100x4)|+ |tanh (x2) (0.5x1 + w22x2 − 3x3)|
+ |tanh (x3) (−3x1 + 3x2 + w33x3)|+ |tanh (x4) (−x1 + w44x4)|

< |(x1 + 3x3)|+ |(0.5x1 + w22x2 − 3x3)|
+ |(−3x1 + 3x2 + w33x3)|+ |(−x1 + w44x4)|
≤ 5.5 |x1|+ (w22 + 3) |x2|+ (w33 + 6) |x3|+ (w44 + 100) |x4|

.

(12)
Let D0 ≥ 0 be the sufficiently large region. For all (x1, x2, x3, x4) satisfying
V (x1, x2, x3, x4) = D with D > D0 there exists the following inequality

v (x1, x2, x3, x4) < 5.5 |x1|+ (w22 + 3) |x2|+ (w33 + 6) |x3|+ (w44 + 100) |x4|
< x2

1 + x2
2 + x2

3 + 100x2
4 = αV (x1, x2, x3, x4)

(13)

then, on the surface

{(x1, x2, x3, x4) |V (x1, x2, x3, x4) = D} (14)

with D > D0 there yields

V̇ = −αV (x1, x2, x3, x4) + v (x1, x2, x3, x4) < 0. (15)

Consequently, the set

{(x1, x2, x3, x4) |V (x1, x2, x3, x4) ≤ D} (16)

is a bounded region of all solutions of the model of hyperchaotic Hopfield neural
networks. It is obvious that equation (3) is invariant under the coordinate’s permu-
tation (x1, x2, x3, x4)→ (−x1,−x2,−x3,−x4) meaning that the model is symmetric
with respect to the origin So attractors of the model will appear in symmetric pair
to restore the exact symmetry of the model by using a pair of symmetric initial
conditions Otherwise the attractors generated will remain symmetric if the exact
symmetry of the orbits has already been restored.

2.3 Analysis of the eigenvalues

To obtain the equilibrium points of our model, let ẋ1 = ẋ2 = ẋ3 = ẋ4 = 0; referring
to the work of [9] and set of synaptic weights matrices of equation (3) the model
of HHNN under consideration has a unique equilibrium point which is the origin
E0 = (0, 0, 0, 0). The Jacobian matrix at that unique equilibrium point can be easily
given as follows.

J =


−1 + sech2 (x̄1) 0.5sech2 (x̄2) −3sech2 (x̄3) −sech2 (x̄4)

0 −1 + w22sech2 (x̄2) 3sech2 (x̄3) 0

3sech2 (x̄1) −3sech2 (x̄2) −1 + w33sech2 (x̄3) 0

100sech2 (x̄1) 0 0 −100 + w44sech2 (x̄4)


(17)

where sech2 (x̄i) =
(
1− tanh2 (x̄i)

)
with i = 1, . . . , 4 is the derivative of the nonlinear

activation function of each neuron at the equilibrium point x̄i. self-synaptic weight of
the second the third and fourth neuron are given in the next section. The eigenvalues
at the origin are obtained by solving the following characteristic equation:

det (λI − J) = λ+ a1λ+ a2λ+ a3λ+ a4 = 0 (18)
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Table 1. Eigenvalues and stability of the unique equilibrium point computed for some
discrete values of self-synaptic weights.

Figure of which Eigen values Nature of Eigen
parameters are used at origin values

Figures 6a and 3
78.7317
1.3827
0.4428± 4.2416i

Unstable node

Figures 6b and 3
88.8761
1.3097
0.4071± 4.2432i

Unstable focus

Figures 8 and 2
68.5438
1.2764
0.3799± 4.2332i

Unstable focus

Figures 9 and 2
68.5438
1.1904
0.3329± 4.2271i

Unstable focus



a1 = 103− bw22−cw33−dw44−a
a2 = 9ac− 102a + 100ad + 9bc− 102bw22−102cw33−3dw44+abw22+
acw33+adw44+bcw22w33+bdw22w44+cdw33w44+303
a3 = 909ac− 201a + 200ad + 909bc− 201bw22−201cw33−3dw44−(27abc)/2+
101abw22+101acw33+2adw44+101bcw22w33+2bdw22w44+2cdw33w44−
9abcw22−100abdw22−100acdw33−9acdw44−9bcdw44−abcw22w33−
abdw22w44−acdw33w44−bcdw22w33w44+301
a4 = 900ac− 100a + 100ad + 900bc− 100bw22−100cw33−dw44−1350abc+
100abw22+100acw33+adw44+100bcw22w33+bdw22w44cdw33w44+
900abcd− 900abcw22−100abdw22−100acdw33−9acdw44−9bcdw44+
(27abcdw44)/2− 100abcw22w33−abdw22w44−acdw33w44+100abcdw22w33+
9abcdw22w44−bcdw22w33w44+abcdw22w33w44+100

(19.a)
where

a = sech2 (x̄1) , b = sech2 (x̄2) , c = sech2 (x̄3) and d = sech2 (x̄4) . (19.b)

The coefficients of the polynomial (Eq. (18)) are all nonzero. According to the
Routh–Hurwitz criterion, the real parts of the roots of equation (18) are positive if
and only if the following inequalities are satisfied:

a1 > 0
a1a2 − a3 > 0
a1 (a2a3 − a1a4)− a2

3 > 0
a4 > 0

. (20)

Now, considering some values of synaptic weights connection described by equa-
tion (2); the four conditional inequalities of equation (20) at different synaptic weights
w22 and w44 are found by numerical simulations (see Tab. 1). As a result, it can be
seen that the origin E0 (0, 0, 0, 0) which is the unique stationary point is an unstable
node with two complex conjugate roots with positive real parts, two positive real
roots for some discrete values of the synaptic weights provided in Table 1. There-
fore, we conclude that the model hyperchaotic Hopfield neural networks investigated
experiences self-excited orbits [16–22].
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3 Complex dynamics of the HHNNs

In this section, all the simulations are made in Turbo Pascal software using the
fourth-order Runge-Kutta formula with a constant time grid of ∆t = 2×10. Synaptic
weights are chosen in extended precision mode using trial and error approach in order
to generate complex behaviors including chaotic or hyperchaotic ones. Quantitative
and qualitative nonlinear analysis tools such as graph of Lyapunov spectrum using
Wolf algorithm [38], bifurcation diagrams, phase portraits, Poincaré sections as well
as frequency spectra are used to explore regions in the parameter space in which the
HHNN exhibits regular and irregular behaviors.

3.1 Transition between regular and irregular behavior in the model

Obviously, regular behavior in a dynamical system is characterized by different peri-
odicity. For example, a dynamical regime with periodic motion is regular and thus
coherent. A chaotic regime that can be also viewed as noise according to the time
series is strongly irregular and therefore incoherent. Main diagnostic tools used to
measure regular or irregular behavior in a given nonlinear dynamical system are
Lyapunov exponents graphs and bifurcation diagrams. For instance in Figures 2b
and 3b, a regular dynamic is characterized by null Lyapunov exponent λ1. However,
this analysis tool is unable to give an exact period of the system for a specific set
of parameters. Bifurcation diagrams plotted, generally combined with the graph of
Lyapunov exponent is the best tool used to overcome this drawback. From bifurcation
diagrams of Figures 2a and 3a, the periodicity is obtained by counting the number
of local maxima/minima shaped on diagrams. The dynamics with regular behav-
ior is characterized by a countable number of local maxima/minima. The dynamic
regime with an incoherent/irregular behavior is localized by an infinite (uncountable)
number of local maxima/minima (see Figs. 2 and 3). Sometimes, one might think
that the bifurcation exhibits an irregular behavior characterized by a thick diagram
whereas it is not the case. Such type of behavior is known as quasiperiodic orbits
(torus behavior) characterized by two null Lyapunov exponents.

To understand the global dynamic behavior of the HHNN investigated, we have
provided Table 2 which gives the general meaning of Lyapunov exponent’s plots of
Figures 2 and 3. From that Table 2 and various graphs shaped in Figures 2 and 3, the
model of neuron investigated in this scientific contribution exhibits regular motions
including periodic orbits with different periodicities and 2-torus. Besides the coher-
ent (regular) behavior, the studied model displays incoherent (irregular) behaviors
including chaos and hyperchaos. From these several bifurcations plotted, some win-
dows can be observed where the traced evolve with a hopping manner. These windows
represent regions where the model develops the coexistence of multiple attractors
associated either to hysteresis or parallel bifurcations. The general behavior of the
model investigated in this work is shown in the two parameter bifurcation depicted in
Figure 4. When w22 and w33 are varied simultaneously, five sets of data are displayed:
we have static behavior characterized by a point attractors (blue and cyan), periodic
orbits and quasiperiodic orbits (yellow), chaotic orbits (red) and hyperchaotic orbits
(brown). Because of the dependency of the initial conditions (multistable property),
the structure of the two parameters diagram can change if it is computed again
starting from different initial points.

Remark that for all the bifurcation diagrams computed in paper, of any discrete
value of the synaptic weights, the computed periodic, chaotic or hyperchaotic orbits
appear under a symmetric form. This symmetric nature of the orbits is related to
conditional symmetry reported in several works [39–41] but to the fact, the set of
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Fig. 2. Bifurcation diagram (a) showing local maxima of the neuron x2 versus parame-
ter w22 and the corresponding graph (b) of Lyapunov exponents λi plotted in the range
0.5 ≤ w22 ≤ 2.5. These superimposed bifurcation diagrams are obtained with initial condi-
tion: (x1(0), x2(0), x3(0), x4(0)) are (0.01,−0.02, 0, 0). Magenta and green respectively in the
diagram are obtained by increasing respectively decreasing the synaptic weight w22 while
the one in blue is obtained for increasing the control parameter, starting from the same fixed
initial condition (0.01,−0.02, 0, 0). Others synaptic weights are w11 = 1, w12 = 0.5, w13 =
−3, w14 = −1, w21 = 0.0, w23 = 3, w24 = 0, w31 = 3, w32 = −3, w33 = 1, w34 = 0, w41 =
100, w42 = 0, w43 = 0, w44 = 170, c1 = c2 = c3 = 1, c4 = 100.

synaptic weights used in this works does not enable the HHNN to undergo the phe-
nomenon of symmetry breaking during bifurcation process.

In addition Li and Yang [12] present the coexistence of two asymmetric orbits
in a simplified Hopfield-type neural network with piece-wise linear (PWL) activa-
tion functions. Remark that PWL activation functions have the advantage that
it can be solved analytically. However, it represents only a first-order description



1142 The European Physical Journal Special Topics

Fig. 3. Bifurcation diagram (a) showing local maxima of the neuron x2 versus parameter
w44 and the corresponding graph (b) of Lyapunov exponents λi plotted in the range 100.0 ≤
w44 ≤ 200.0. These superimposed bifurcation diagrams are obtained with initial condition:
(x1(0), x2(0), x3(0), x4(0)) are (0.01,−0.02, 0, 0). The magenta and green in the diagram
respectively are obtained by increasing respectively decreasing the synaptic weight w44

while the one in blue is obtained for increasing the control parameter, starting from the
same fixed initial condition (0.01,−0.02, 0, 0). Others synaptic weights are w11 = 1, w12 =
0.5, w13 = −3, w14 = −1, w21 = 0.0, w22 = 2, w23 = 3, w24 = 0, w31 = 3, w32 = −3, w33 =
1, w34 = 0, w41 = 100, w42 = 0, w43 = 0, c1 = c2 = c3 = 1, c4 = 100.

(i.e. qualitative description) of the neuronal model and consequently may lead to
erroneous bifurcations in the real physical systems. In contrast, a smooth mathemat-
ical model of the activation functions can be exploited for a better characterization
of both coherent and incoherent behaviors of the model [16–19]. This latter approach
has been used in several works that focused on the multistable properties of the
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Table 2. Attractors generated depending of Lyapunov exponents values.

Nature of Lyapunov exponents Attractors type
λ1,2,3,4 < 0 Point
λ1 = 0 and λ2,3,4 < 0 Limit cycle (periodic orbits)
λ1,2 = 0 and λ3,4 < 0 For 2-torus (quasiperiodic orbits)
λ1,2,3 = 0 and λ4 < 0 For 3-torus
λ1 > 0, λ2 = 0 and λ3,4 < 0 Chaotic orbits
λ1,2 > 0, λ3 = 0 and λ4 < 0 For hyperchaotic orbits

Fig. 4. Standard Lyapunov stability diagrams in the (w22, w33) plane obtained by scanning
upward the values of control parameters where Lyapunov exponents are unable to discrim-
inate individual oscillatory phases: the blue and cyan shadings mark the non-oscillation,
yellow for periodic and quasiperiodic oscillations, red color denotes chaos and brown for
hyperchaotic behavior respectively. Initial conditions are (0.01,–0.02,0,0).

HHNN [14,15,23,24,28] but not hyperchaotic one. This is if we reconsider this work
by using piece-wise linear (PWL) activation functions in an HHNN the obtained
results should be completely different.

3.2 Coexistence of bifurcations and multiple attractors

Many dynamical systems can exhibit many coexisting stable states for a same set
of parameters. This widespread phenomenon in nature is called multistability. This
phenomenon has been found in several separated branches of science, including cli-
mate science, physics, chemistry, ecology, biology, neuroscience, and genetics [14–24].
When a coexistence of a multitude of states is observed, the system can switch from
one stable state to the other either randomly by perturbations or in a desired manner
using a control strategy [42]. To better observe the phenomenon of coexistence of sta-
ble states in the model investigated, we have provided Figure 5 which is an extension
of the diagram in Figure 2 in the range 0.5 ≤ w22 ≤ 2.5. From this diagram, the
coexistence of several stable states with different natures can be observed including
periodic, torus, chaotic and hyperchaotic attractors. For example in Figure 3a when
w44 = 180 (resp. w44 = 190) the model under consideration displays coexistence of
quasiperiodic orbits (magenta) and chaotic (black) orbits. Respectively, coexistence
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Fig. 5. Enlargement of the bifurcation diagram of Figure 2 showing the region in which
the Hopfield neural network exhibits multiple coexisting attractors. This region corresponds
to values of synaptic weight w22 in the range 1.2 ≤ w22 ≤ 2. Four sets of data are super-
imposed corresponding, respectively, for increasing and decreasing the synaptic weight w22

(see Tab. 3).

Table 3. Different procedures used to obtain coexisting bifurcation diagrams for vary-
ing w22 (see Fig. 7). The rest of parameters are fixed as follows: Other parameters are
w11 = 1, w12 = 0.5, w13 = −3, w14 = −1, w21 = 0.0, w23 = 3, w24 = 0, w31 = 3, w32 = −3,
w33 = 1, w43 = 0, w41 = 100, w42 = 0, w43 = 0, w44 = 170, c1 = c2 = c3 = 1, c4 = 100.

Color graph Parameter range Sweeping direction Initial conditions
(X1 (0) , X2 (0) , X3 (0) , X4 (0))

Green 1.48 ≤ w22 ≤ 2 Increasing (0, 1, 0, 0)
1.2 ≤ w22 ≤ 1.48 Decreasing (0, 1, 0, 0)

Magenta 1.48 ≤ w22 ≤ 2 Increasing (0, 0.8, 0, 0)
1.2 ≤ w22 ≤ 1.48 Decreasing (0, 0.8, 0, 0)

Black 1.48 ≤ w22 ≤ 2 Increasing (0, 0.6, 0, 0)
1.2 ≤ w22 ≤ 1.48 Decreasing (0, 0.6, 0, 0)

Blue 1.48 ≤ w22 ≤ 2 Increasing (0, 0.4, 0, 0)
1.2 ≤ w22 ≤ 1.48 Decreasing (0, 0.4, 0, 0)

of period-1 limit cycle (magenta) and hyperchaotic (black) attractors is as depicted
in Figures 6a(i) and 6b(i). On the same figures, hyperchaotic orbits are characterized
by a large number of points on the Poincaré map. Periodic orbit has a finite number
of points on the Poincaré map and quasiperiodic orbits are characterized by points
gathering like circles (see Figs. 6a(ii) and 6b(ii)).

These singular cases of the coexisting orbits in a HHNN are supported using basins
of attraction (see Fig. 7). In Figure 7a the basins of attraction with very complex shape
having a riddle structure justify the higher sensibility of the model to initial conditions
in that range of system parameters. In contract, the one in Figure 7b presents a very
simple structure since each attractor processes a specific region where their basin of
attraction is located. Likewise, the coexistence of several regular stable states can be
also captured as represented in Figures 8 and 9. For example, Figure 8a(i) displays the
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Fig. 6. Coexistence of two different attractors with different shape. (a) corresponds to a
symmetric tore and symmetric chaotic attractor for w44 = 180, Initial conditions (x1 (0),
x2 (0), x3 (0), x4 (0)) are (0, 1, 0, 0) and (0, 0.6, 0, 0) respectively, with their corresponding
double sided Poincaré section. (b) corresponds to a symmetric period-1 and symmetric
hyper-chaotic attractor for w44 = 190, Initial conditions (x1 (0), x2 (0), x3 (0), x4 (0)) are
(0, 2.24, 0, 0) and (0, 1, 0, 0) respectively, with their corresponding double sided Poincaré
section.

Fig. 7. Section of basins of attraction of coexisting quasiperiodic orbit (magenta) and
hyperchaotic (black) attractors in (a) and basins of attraction of coexisting period-1 limit
cycle (magenta) and hyperchaotic (black) attractors in (b) shown in Figures 6a and 6b for
null initial conditions for other state variables.
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Fig. 8. Coexistence of three symmetric attractors with different shape for w22 = 1.58, Ini-
tial conditions (x1 (0), x2 (0), x3 (0), x4 (0)) are (0, 1.68, 0, 0), (0, 1, 0, 0) and (0, 2, 0, 0) respec-
tively for A1, A2 and A3 with their corresponding double sided Poincaré section.

Fig. 9. Coexistence of four symmetric attractors with different shape for w22 = 1.40, Initial
conditions (x1 (0), x2 (0), x3 (0), x4 (0)) are (0, 2, 0, 0), (0, 0.8, 0, 0), (0, 1, 0, 0) and (0, 0.4, 0, 0)
respectively for A1, A2, A3 and A4 with their corresponding frequency spectra.

coexistence of period-1 limit cycle with two quasiperiodic orbits of different shapes and
their corresponding double-sided Poincaré section in Figure 8a(ii).

In the same line Figure 9a(i) shows the coexistence of four stable states of dif-
ferent topological forms and their corresponding frequency spectra in Figure 9a(ii).
Figure 10 represents samples of basins of attraction showing different domains initial
conditions in which attractors of Figure 8a respectively Figure 9a can be captured.
For example, in Figure 10a the attractor A1 is represented in cyan, A2 in yellow
and A3 in blue. In the same line, Figure 10b enables us to see the domain of ini-
tial conditions associated with the various coexisting attractors of Figure 10a. It is
important to stress that the network addressed in this work possesses rich dynamics
since it displays a multitude of coexistence of symmetrical orbits including, peri-
odic, quasi-periodic, chaotic and hyperchaotic one in contrast to the coexistence of
pair of symmetrical orbits or coexistence of asymmetrical orbits generally four in the
literature [14,15,23,24,28].

Based on the obtained result, we would like to stress that, to the best of the
author’s knowledge, the phenomenon of the coexistence of up to four symmetrical
attractors obtained in this work is rarely found in the literature. Particularly in
Hopfield neural network, this is the first report focused on the coexistence of multiple
attractors in a HHNN.
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Fig. 10. Section of basins of attraction of coexisting quasiperiodic orbits (cyan, yellow)
with an periodic orbit (blue) in (a) and basins of attraction of coexisting of four periodic
orbits in (b) as shown in Figures 8 and 9, for null initial conditions for other state variables.

4 PSpice based simulations

4.1 Implementation of the proposed HNNs

Another approach to explore the dynamics of the equation (3) is to construct an
analog computer.

Such a method is helpful to show the feasibility of the mathematical model (3)
[43–45]. More interestingly, the analog computer offers the possibility to confirm
previous results by simply changing the values of a control resistor. It also pro-
vides the possibility to introduce wished initial values of capacitors. The main goal
of this section is to design and simulate an appropriate analog computer of the
mathematical model (3). The circuit in Figure 11 has been designed following the
approach of analog computer based on Miller integrators using operational amplifiers,
capacitors, resistors. The neuron state variables xj (j = 1, 2, 3, 4) of the system (3)
are associated with the voltages across the capacitors C1, C2, C3 and C4 respec-
tively. As a result, the circuit in Figure 11 is associated by the following evolution
equations:
C1

dX1
dt = − 1

RX1 + 1
R11

tanh (X1) + 1
R12

tanh (X2)− 1
R13

tanh (X3)− 1
R14

tanh (X4)

C2
dX2
dt = − 1

RX2 + 1
R22

tanh (X2) + 1
R23

tanh (X3)

C3
dX3
dt = − 1

RX3 + 1
R31

tanh (X1)− 1
R32

tanh (X2) + 1
R33

tanh (X3)

C4
dX4
dt = − 1

R40
X4 + 1

R41
tanh (X1) + 1

R44
tanh (X4)

(21)
where X1, X2, X3, and X4 are the voltage across capacitors C1, C2, C3 and C4 with
C1 = C2 = C3 = C4 = C = 10 nF, t = τRC, R = 10 KΩ, RC = 1 KΩ, R0 = 0.52 KΩ
R11 = R

|w11| = 10 KΩ, R12 = R
|w12| = 20 KΩ, R13 = R

|w13| = 3.333 KΩ, R14 =
R

|w14| = 10 KΩ, R23 = R
|w23| = 3.333 KΩ, R31 = R

|w31| = 3.333 KΩ, R32 =
R

|w32| = 3.333 KΩ, R33 = R
|w33| = 10 KΩ, R40 = R

|100| = 0.1 KΩ, R41 = R
|w41| =

0.1 KΩ, R22 = R
|w22| and R44 = R

|w44| are tuneable.
The nonlinear neuron activation function is built-in Figure 11b using resistors,

transistors, Op. Amp and a constant current source [34]. Here the value of the con-
stant current source I0 is 1.1 mA. Note that this constant current source can be imple-
mented physically by the approach of Bao and collaborators [14,15]. The constructed
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Fig. 11. Circuit realization of the hyperchaotic Hopfield neural network.

circuit is implemented in the electronic simulation package OrCAD. Figure 12 dis-
plays some two-dimensional projection of the HHNN in the various planes. From
these figures, no form of synchronization is observed between any state variables
thus, the possibility of conservative quantities is to exclude.
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Fig. 12. PSpice simulations results showing 2D projection of the hyperchaotic attrac-
tors in the various plane for R44 = 0.05263 kΩ and R22 = 5 kΩ. Initial conditions
(X1 (0), X2 (0), X3 (0), X4 (0)) are (0 V, 1 V, 0 V, 0 V).

4.2 Observation of multiple attractors using PSpice

The PSpice simulations have also confirmed the possibility of the coexistence of
multiple stable states observed during the theoretical analysis of the HHNN model.

In Figure 13, we present PSpice simulation results showing coexistence of two
attractors including a hyperchaotic attractor and period limit cycle in the circuit
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Fig. 13. PSpice simulations results showing coexistence of a symmetric Hyper-
chaotic attractors and a symmetric period one limit cycle for R44 = 0.05263 kΩ and
R22 = 5 kΩ. Initial conditions (X1 (0), X2 (0), X3 (0), X4 (0)) are (0 V, 1 V, 0 V, 0 V) and
(0 V, 2.24 V, 0 V, 0 V) respectively.

Fig. 14. PSpice simulations results showing coexistence of a symmetric Hyper-chaotic
attractors and a symmetric tore for R44 = 0.056 kΩ and R22 = 5 kΩ. Initial conditions
(X1 (0), X2 (0), X3 (0), X4 (0)) are (0 V, 1 V, 0 V, 0 V) and (0 V, 2.24 V, 0 V, 0 V) respectively.

mimicking the dynamical behaviour of the HHNN model. Each attractor is obtained
for R44 = 0.05263 kΩ and R22 = 5 kΩ. In the same line, Figure 14 displays the
coexistence of two attractors, including a chaotic attractor and a quasi-periodic orbit
(two torus) using two different initial conditions.

In the same manner, the coexistence of three and four disconnected symmetric
attractors, is presented in Figures 15 and 16. Figures 15 shows the coexistence of
two quasiperiodic orbits and a symmetric period −1 limit cycle, obtained by starting
from three different initial conditions. Whereas Figure 16: shows the coexistence of
four different symmetric attractors with different stating from four different initial
conditions. It is good to mention that, minor differences can be observed between
values of resistance obtained from PSpice simulation and the one obtained with Turbo
Pascal. Such discrepancy can be assigned to computational errors of each integration
scheme adopted. In this section, PSpice based simulations have been successfully used
to support previous theoretical predictions. The initial condition is very important in
systems exhibiting coexistence of multiple stable states. In software simulations like
PSpice, the modification initial condition consists to change the initial voltage of the
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Fig. 15. PSpice simulations results showing coexistence of three attractors with different
topologies for R44 = 0.05882 kΩ and R22 = 6.33 kΩ. Initial conditions (X1 (0), X2 (0),
X3 (0), X4 (0)) are (0 V, 1.1 V, 0 V, 0 V), (0 V, 0.1 V, 0 V, 0 V) and (0 V, 0.5 V, 0 V, 0 V) respec-
tively.

capacitors or initial current of inductors. This is achieved in hardware experiments
by switching on and off the power supply. This technique is very simple although the
user has no information about initial conditions used to start the system. The second
technique is very complex because the user needs to build a circuit for reinitializing
initial conditions before carrying out the experimental work [46].

5 Conclusion

This paper was focused on the dynamic analysis of a hyperchaotic Hopfield neural
network in which, multiple bifurcation modes, as well as multiple attractors coexist.
The properties of the model including the stability of the unique stationary point,
dissipation, and condition of the existence of an attractor were addressed. Investi-
gations have revealed that, the considered HHNN displays some complex nonlinear
phenomena such as quasi-periodic orbits, periodic orbits, chaos, hyperchaotic orbits,
and coexistence of self-excited attractors (e.g. coexistence of two, three and four
disconnected stable states) for the same set of the synaptic weight matrix starting
from different initial conditions. These complex phenomena reported in this contri-
bution have been tracked using traditional nonlinear diagnostic tools such as phase
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Fig. 16. PSpice simulation results showing coexistence of three attractors with dif-
ferent topologies for R44 = 0.05882 kΩ and R22 = 7.14 kΩ. Initial conditions
(X1 (0), X2 (0), X3 (0), X4 (0)) are (0 V, 0.5 V, 0 V, 0 V), (0 V, 1.1 V, 0 V, 0 V),

(
0 V, 2 V,

0 V, 0 V
)

and (0 V, 2.6 V, 0 V, 0 V) respectively.

portraits, bifurcation diagrams, and graph of Lyapunov exponents, frequency spec-
tra, two-parameter bifurcation diagrams and basins of attractions. Finally, the results
of theoretical/numerical analyses were perfectly supported using PSpice based sim-
ulations. The control of the multistability in hyperchaotic Hopfield neural network
with coexisting attractors (up to four attractors) represents the topic of our future
research works.
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