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Abstract 

It is proposed that distinct anatomical regions of cerebral cortex 
and of thalamic nuclei are functionally two-dimensional. On this 
view, the third (radial) dimension of cortical and thalamic structures 
is associated with a redundancy of circuits and functions so that 
reliable signal processing obtains in the presence of noisy or am- 
biguous stimuli. 

A mathematical model of simple cortical and thatamic nervous 
tissue is consequently developed, comprising two types of neurons 
(excitatory and inhibitory), homogeneously distributed in plafiar Animal Cortex 
sheets, and interacting by way of recurrent lateral connexions, species 
Following a discussion of certain anatomical and physiological Volume 
restrictions on such interactions, numerical solutions of the relevant 
non-linear integro-differential equations are obtained. The results (mm 3) 
fall conveniently into three categories, each of which is postulated 
to correspond to a distinct type of tissue: sensory neo-cortex, archi- 
or prefrontal cortex, and thalamus. Edible frog 6 

The different categories of solution are referred to as dynamical (Rana 
modes. The mode appropriate to thalamus involves a variety of esculenta) 
non-linear oscillatory phenomena. That appropriate to archi- or Rabbit 1470 
prefrontal cortex is defined by the existence of spatially inhomo- (Lupus 
geneous stable steady states which retain contour information about cuniculus) 
prior stimuli. Finally, the mode appropriate to sensory neo-cortex Man 230000 
involves active transient responses. It is shown that this particular 
mode reproduces some of the phenomenology of visual psycho- 
physics, including spatial modulation transfer function determina- 
tions, certain metacontrast effects, and the spatial hysteresis 
phenomenon found in stereopsis. 

O. Introduction 

0.1. Complexity and Redundancy in Cerebral Cortex 
and Thalamus 

One of the most striking features of the evolution 
of the brain is that the enormous increase in volume 
of cerebral cortex relative to the rest of the brain is 
predominantly the result of an increase in surface area 
rather than an increase in thickness. Table 1 shows the 
comparative dimensions and main c3)toarchitectonic 
features of the cortexes of the Edible Frog (Rana 
esculenta), Rabbit (Lupus cuniculus), and Man. It will 
be seen that while there is an increase by a factor of ten 
of cortical thickness, there is a corresponding increase 
of telencephalic surface area by a factor of some 3500. 

Similarly, in comparing Rabbit with Man there is an 
increase of cortical thickness by a factor of only 
1.5-1.8 as compared to an increase of telencephalic 
surface area by a factor of about 100. 

Table 1. Dimensions and cytoarchitectonic ~atures of cerebral 
cortex 

Neurons 

Surface Thickness Number Packing 
density 

area (ram) ( x 106) (per 
(ram 2) 0.001 mm 3) 

24 0.25 6 1000 

843 1.74 645 438 

83591 2.4--3.00 10000 30---100 

The main factor responsible for the increased 
surface area in higher Vertebrates is, of course, the 
enormous increase in the number of neurons. Further- 
more the neurons of higher vertebrates are larger than 
those in lower Vertebrates, both in nuclear volume and 
in the extent of dendritic ramification (Blinkov and 
Glezer, 1968). This increase in neuronal size is ac- 
companied by a decrease in packing densities, as is 
shown in Table t. However, this decreased packing 
density is compensated for by the increased cortical 
thickness to such an extent that the actual number of 
neurons located in a cylinder of given cross-sectional 
area, and extending radially throughout the thickness 
of the grey matter, shows a rather small variation from 
species to species. For  example, consider the number 
of neurons contained in a cortical cylinder with a cross- 
sectional area of 1 mm 2. In Frog such a cylinder is 
0.25 mm long and contains about 250000 neurons. 
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In Rabbit the corresponding cylinder is 1.75 mm long 
and contains about 750000 neurons. Finally, in Man 
the cylinder is about 2.7 mm long and contains an 
average of 200000 neurons. 

The fact that the number of neurons in such 
radially oriented cortical cylinders varies by less than a 
factor of four compared to the 104 variation in the 
number of neurons in the cortexes of these three 
species suggests that the complexity of radially 
directed interactions within the cortex is roughly 
constant from species to species. On the other hand, 
the extent and complexity of lateral interactions in the 
higher Vertebrates may be expected to increase 
enormously, due to the increased number and size of 
neurons and consequently the greater extent of their 
dendritic ramifications (Blinkov and Glezer, 1968). 

This increase in the lateral extent and complexity 
of interactions within cerebral cortex is paralleled by 
the appearance of much more elaborate and subtle 
forms of behavior in higher Vertebrates, especially 
Primates and Man. Furthermore, all sensory stimuli 
are received in such species as patterns falling 
on receptive surfaces that are at most two-dimensional, 
and these receptive surfaces project topographically 
to cerebral-cortex (Polyak, 1957). It therefore seems 
very likely that individual anatomical regions of 
cerebral cortex are functionally organised as two- 
dimensional surfaces or sheets, and that the cortex 
may be viewed as a complex, interconnected heterachy 
of such sheets. Further support for this postulate is 
provided by the observation that specific afferents to 
primary sensory cortex synapse almost entirely within 
the plane comprising layer IV, and that superficial 
and deep layers receive afferents from layer IV mainly 
through radially oriented inter-connexions (Lorente 
de N6, 1949; Sholl, t956; Colonnier, 1965; Szenta- 
gothai, 1967; Scheibel and Scheibel, 1969). It follows 
that the specific afferent stimulus to primary sensory 
cortex is itself two-dimensional. 

If differing anatomical regions of cerebral cortex 
are indeed functionally two-dimensional, what is the 
role of neurons distributed in depth, i.e., in the third 
(radial) dimension? One role for these neurons may 
be to provide reliability through local redundancy. 
It is well known to neurophysiologists that the response 
of any single neuron is variable, even under carefully 
controlled experimental conditions: only through the 
averaging of perhaps twenty to thirty trials are 
reliable results to be obtained. This variability has two 
sources: uncontrolled or extraneous signals from 
neurons in other parts of the brain, i.e., ambiguity and 
noise in the signal itself, and intrinsic fluctuations of 
membrane potential within the neuron. Mathematical 

investigations of reliable information processing by 
systems composed of unreliable components have 
shown that any prescribed level of fidelity may be 
obtained so long as there is sufficient redundancy 
within these systems (v. Neumann, 1956), and that the 
most efficient systems are those which comprise 
complex components rather than simple ones (Wino- 
grad and Cowan, 1963). It is therefore suggested that 
one reason for the distribution of neurons in depth 
might be to provide the local redundancy necessary for 
reliable operation, and that the increased complexity 
of radially oriented neuronal interactions in mammals 
as compared to lower vertebrates might serve to 
increase the efficiency with which reliable operation is 
obtained (see w 5.2.1). 

Physiological evidence for such redundancy is 
provided by extracellular microelectrode studies of 
single neurons in somato-sensory cortex (Mountcastle, 
1957) and striate and peri-striate cortex of Cats and 
Monkeys (Hubel and Wiesel, 1963, t965, 1968). As is 
now well known, within a single radially organised 
cortical column the majority of neurons respond 
optimally to very nearly identical stimuli. Further 
support for the local redundancy hypothesis is 
provided by the existence of strong radial connectivity 
within cortex (Lorente de N6, 1949; Colonnier, 1965; 
Szentagothai, 1967; Scheibel and Scheibel, 1970) and 
several anatomists have speculated on its significance 
in similar terms. 

This view of cortex as a laterally organised net of 
radially redundant columns carries with it the implica- 
tion that such columns are functional units, and that 
it is the over-all activity of neurons within a column 
which is functionally significant rather than the 
responses of any single neuron (see w 5.2.2). In the 
terminology of a previous paper, a column may be 
thought of as a spatially localised neuronal aggregate 
(Wilson and Cowan, 1972). However in the present 
paper columns will not be treated explicitly. Rather, 
it will be seen that localised neuronal activity consistent 
with the physiological concept of a column arises as a 
natural consequence of the interplay between topo- 
graphic afferent projections and self-organising inter- 
actions within cortex. This view of cortical organisa- 
tion is very similar to that of Scheibel and Scheibel 
(1970) in which cortex is conceived of as a matrix of 
overlapping radially oriented cylindrical modules, 
each module being defined by the extent of specific 
afferent terminal arborisations and the lateral spread 
of the dendritic branches of large cortical pyramids. 

Entirely similar considerations obtain for sub- 
cortical structures such as thalamus. There are 
concomitant increases in the surface areas of these 
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structures in relation to receptive surfaces from Frog oe 
to Man, although not by such large factors (Blinkov 
and Glezer, 1968). Moreover there is clear evidence ~' 
of the existence of functional columns, e.g., in the E(x, t) 
lateral geniculate nucleus (Bishop, Kozak, Levick, and 
Vakkur, 1962; Sanderson, 1971) correlated with 
receptive field location, and visual direction. It appears l(x, t) 
that equal numbers of retinal ganglion cells project 
to equal volumes of the lateral geniculate nucleus ~x 
(Sanderson, 1971), and a fortiori to equal numbers of ~t 
lateral geniculate neurons distributed in columns. It P(x, t) 

O_(x, t) will be assumed that radial redundancy exists in these Ne(x, t) 
sub-cortical structures, and that like cortex, they are 
functionally two-dimensional. R,(x, t) 

It follows that the brain as a whole may be thought 
of as a complex hierarchy of functionally two-dimen- ~~ [~~ 
sional sheets of nervous tissue. In this paper a mathe- 
matical model will be developed in which cortical (or ~ [sl] 
thalamic) tissue is represented as a single two-dimen- 
sional sheet. It will be assumed that neurons of various 
types are uniformly distributed within the sheet, and Gt0e) 
that lateral connectivity is a function of distance only, G(0i) 
i.e., it will be assumed that the sheet is homogeneous 
and isotropic. The theory as developed in this paper 01 
is not specially tailored to any particular area of cortex h(ge; 01) 
or thalamus other than through the choosing of ~[] 
certain parameters to specify patterns of intercon- R,(x,t) 
nexion, and it may therefore serve as a basis for the 
analysis of very generalised cortex-like tissue. Certain Ri(x, t) 
details of cortical organisation, such as the orienta- 

P e 

tional specificity of columns (Hubel and Wiesel, 1963, r~ 
1965, 1968) have clearly been omitted. It should be (e(x, t)) 
noted, however, that several neurophysiologists have (I(x, t)) 

| 
questioned the functional significance of orientational 0 
specificity and have pointed out that it may be just an v 
incidental manifestation of the asymmetry which must 
obtain if cortical neurons receive projections from (E(t)) 
two to three thalamic neurons (Burns, 1968; Creuz- 
feldt and Ito, 1968). (I(t)) 
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0.2. List  of  Symbols 

Post-synaptic membrane potential (psp). 
Maximum amplitude of psp. 
Time. 
The neuronal membrane time constant. 
Threshold value of membrane potential  
Absolute refractory period. 
Synaptic operating delay. 
Velocity of propagation of action potential. 
Cartesian coordinate. 
The probability that cells of class f are connected 
with cells of class j a distance x away. 
The mean synaptic weight of synapses of the jj-th 
class at x. 
The space constant for connectivity. 

Surface density of excitatory neurons in a one- 
dimensional homogeneous and isotropic tissue. 
Surface density of inhibitory neurons in a one- 
dimensional homogeneous and isotropic tissue. 
Excitatory Activity, proportion of excitatory cells 
becoming active per unit time at the instant t, at the 
point x. 
Inhibitory Activity, proportion of inhibitory cells 
becoming active per unit time at the instant t, at the 
point x. 
A small segment of tissue. 
A small interval of time. 
Afferent excitation or inhibition to excitatory neurons. 
Afferent excitation or inhibition to inhibitory neurons. 
Mean integrated excitation generated within ex- 
citatory neurons at x. 
Mean integrated excitation generated within in- 
hibitory neurons at x. 
Expected proportion of excitatory neurons receiving 
at least threshold excitation per unit time, as a func- 
tion of Ne. 
Expected proportion of inhibitory neurons receiving 
at least threshold excitation per unit time, as a function 
of N/. 
Distribution function of excitatory neuronal thresh- 
olds. 
Distribution function of inhibitory neuronal thresh- 
olds. 
A fixed value of neuronal threshold. 
Proportion per unit time of excitatory neurons at x 
reaching/)1 with a mean excitation -Ne. 
Heaviside's "step-function'. 
Number of excitatory neurons which are sensitive 
at the instant t. 
Number of inhibitory neurons which are sensitive 
at the instant t. 
Refractory period of excitatory neurons. 
Refractory period of inhibitory neurons. 
Time coarse-grained excitatory activity. 
Time coarse-grained inhibitory activity. 
Spatial convolution. 
Threshold of a neuronal aggregate. 
Sensitivity coefficient of response of a neuronal 
aggregate. 
Time coarse-grained spatially localised excitatory 
activity. 
Time coarse-grained spatially localised inhibitory 
activity. 
See w 2.2.1, w 2.2.7, w 3.1. 
Velocity with which retinal images are moved apart. 
Stimulus width. 
Spatially homogeneous steady states of neuronal 
activity. 
See w 5.1. 

1. The Mathematical Model  

1.0. Relevant Properties o f  Neurons and Their 
Interconnexions 

Cortical neurons can be classified in two very 
general ways. They are either excitatory or else 
inhibitory in their effects on other neurons (Eccles, 



Pial surface 1964) and they are either efferent cells, or "inter- 
neurons". Efferent neurons possess long axons that 
penetrate the white matter beneath the cortex, whereas 
interneurons possess short axons that remain within 
the cortical grey matter. One can of course introduce 
further distinctions such as the differing size and shape 
of perikarya or of dendritic and axonal arborisations, 
but it will be assumed that such features may be 
accounted for in terms of the mean pattern of neuronal 
interconnexions at various locations within the cortex. 
It will therefore be assumed that there are two types 
of neurons in the cortex, excitatory and inhibitory, 
interspersed in depth and uniformly distributed relative 
to the pial surface. That is, it is assumed that equal 
numbers of excitatory and inhibitory neurons co-exist 
within the grey matter under equal areas of cortical 
surface, at least within a particular anatomical region. 
It is also assumed that the great majority of excitatory 
cells are efferents and that inhibitory neurons are 
interneurons, i.e., it is the activity of excitatory neurons 
which is projected from one anatomical region to 
another. 

Individual neurons will be assumed to summate 
incoming excitation both spatially and temporally, 
in a linear time-invariant fashion. Thus the response 
to a unit excitation is represented by the function 
c~(t) for an excitatory 
-~ ( t )  for an inhibitory 
usual form for ~(t) is 
ponential with a time 
seconds. Neurons will 
excitation thresholds 0 

post-synaptic potential and 
post-synaptic potential. The 
e e x p ( - t / p ) ,  a decaying ex- 
constant p of several milli- 
also be assumed to have 

for the generation of action 
potentials, measured in units of membrane potential, 
and absolute refractory periods of duration r following 
activation during which they cannot retire (see w 5.2.3). 
Finally neurons will be assumed to possess a latent 
period or synaptic delay ~, that is independent of 
excitation, and which measures the time lapse between 
excitation reaching threshold, and the consequent 
appearance of action potentials. These potentials are 
assumed to propagate without decrement along axons, 
with the velocity v. 

All possible types of interconnexion will be 
permitted: excitatory-excitatory, excitatory-inhibitory, 
inhibitory-excitatory, and inhibitory-inhibitory. Each 
type will be taken to be a function only of the distance 
between points on the pial surface. Thus the tissue 
is assumed to be isotropic as well as homogeneous. 
A representation of this arrangement is shown in 
Fig. 1. It will be seen that all interconnexions are 
recurrent (Ratliff, 1965) and either spatially local, or 
lateral. There is ample anatomical evidence for such 
circuitry in many cortical areas (Colonnier, 1965; 
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Fig. 1. Diagram of spatial interactions in neural tissue model. 
Lettered circles represent spatially localised excitatory and inhibitory 
neural aggregates; while the symbols ---, and ~ represent excitatory 
and inhibitory interactions, respectively. Note that interactions 
occur both locally and laterally relative to the pial surface. In the 
actual model, excitatory and inhibitory neurons are assumed to 
be interspersed and uniformly distributed relative to the pial surface 

Szentagothai, 1967; Scheibel and Scheibel, 1970) (see 
w 5.2.4). The various types of interconnexion are 
represented by the functions fljj,(x) that measure the 
probability that post-synaptic neurons of type j '  are 
connected with presynaptic neurons of type j located 
at a distance x. Following Uttley (1955) and Sholl 
(1956), ~ji,(x) will be taken to be of the form 
bjj, exp(- lx l /a i j ,  ) where both j and j '  run over ex- 
citatory and inhibitory classes. 

1.1. Neuronal Activity Variables 

To describe the successive states of neuronal tissue 
composed of both excitatory and inhibitory neurons, 
two variables must be introduced, one for excitatory 
neuronal states and the other for inhibitory neuronal 
states. These variables will naturally be functions of 
position and time. By assumption, neuronal tissue is 
highly redundant especially in the radial direction, a 
fortiori, it is not single unit activity which is func- 
tionally important, but rather the net activity of all 
neurons of a given type located under a small element 
of the pial surface. This suggests the following re- 
presentation of neuronal activity. Let excitatory and 
inhibitory neurons be homogeneously and isotropically 
distributed throughout the tissue with surface densities 
0e and 0i respectively. Let E(x, t) be the proportion of 
excitatory neurons becoming active per unit time at 
the instant t, at the point x in the tissue, and I(x, t) the 
corresponding proportion of inhibitory neurons. Then 
OeE(x, t) 6 x f t  and oil(x, t) 6 x f t  will give the numbers 
of excitatory and inhibitory neurons, respectively, 
becoming active under the surface element 6x at x, 
during the interval between t and t +  fit. Following 
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Beurle (1956), the functions E and I will be referred 
to as neuronal activities, or simply as activities. 

In general the activities E and I will be random 
variables. However several factors suggest that the 
probability distribution associated with these variables 
will be sharply peaked about their mean values. 
Firstly, if the inter-connexions between neurons, 
although locally random, are sufficiently dense to 
justify the postulate of redundancy, then one can 
expect the variance in connectivity from neuron to 
neuron to be small. Therefore, within proximate cells 
of the same type, post-synaptic potentials should be 
highly correlated. Secondly, neuronal thresholds, plus 
the relatively rapid decay of post-synaptic potentials, 
combine in their effects to provide an effective temporal 
noise filter, so that only the co-operative activity of a 
large number of afferents will be sufficient to fire or 
inhibit neuronal activities. It is therefore legitimate 
to treat E and I as deterministic variables representing 
the mean values of sharply peaked probability 
distributions. 

Before turning to the derivation of equations for E 
and I, two conventions are to be noted. Firstly, the 
state E = 0 ,  I = 0 ,  the resting state, is assumed to 
reflect low level background activity, so that small 
negative values of the activities are allowed, and serve 
to represent a depression or inhibition of the resting 
discharge. Secondly, only afferent activities (stimuli 
or forcing functions) that vary in one spatial dimension 
are considered. Because of the homogeneity and 
isotropy of the model, the neuronal response to such 
patterns will also vary only in the same dimension. 
Consequently the mathematical treatment will be 
limited to that of a one-dimensional tissue. The 
generalisation to two-dimensions is obvious. 

1.2. Derilyation of  Equations for Neuronal Activity 

It follows from the assumption of w 1.0. that 
neurons will become activated only if their post- 
synaptic potentials exceed threshold, and if they are 
at the same time sensitive, i.e., non-refractory. Neglect- 
ing correlations that may obtain between levels of 
neuronal excitation and neuronal sensitivities, it 
follows that at the instant t + z, the activity located 
at x is equal to the proportions per unit time of 
excitatory and inhibitory neurons located at x whose 
integrated excitations exceeded threshold multiplied 
by (respectively) the proportions of excitatory and 
inhibitory neurons which were sensitive at the instant t. 

In order to determine the proportions of neurons 
receiving supra-threshold excitation it is first necessary 
to derive an expression for the mean integrated 

excitation generated in neurons at x by afferent 
activity. Consider first only excitatory neurons at x. 
At the instant t, 

OeE(X, t  Ix-Xl)flee(x-X)dXty e 

will be the mean rate of arrival of impulses at excitatory 
neurons located at x, caused by excitatory activity 

Ix- xI 
at the instant t - -  within a segment of length 

Ve 
d X  at X. Similarly at the instant t 

Oi I X , t  f l i e ( x - X )  d X  
I) i 

will be the mean rate of arrival of impulses at ex- 
citatory neurons located at x, caused by inhibitory 

activity at the instant t Ix - XI within a segment of 
lyl 

length d X  at X. 
The convolutions 

Oe E X, t �9 f l ee (x -X)  d X  
- -  oO l y e  

and 

Oe I 32, t - fli~(x - X) d X  
- ~ lyi 

therefore give the mean rates of arrival of impulses at 
excitatory neurons located at x, from all excitatory 
and inhibitory neurons (respectively) in the tissue. 

In similar fashion because of the assumed linear 
time-invariant nature of temporal summation in 
neurons, the difference 

Ne(x, t) = QeE X, r t x -  XI f l~(x - X) d X  
- -  ~ l y  e 

_ 

-4- P(x,r)l  e ( t -  r )  d r  

gives the mean value of integrated excitation for 
excitatory neurons at x (see 5.2.5). Here P(x, t) has been 
introduced to represent afferent activities. As such it 
may be either excitatory or inhibitory in nature. 

Let ~9~ be the expected proportion of ~xcitatory 
neurons that receive at least threshold excitation per 
unit time, as a function of the mean integrated excita- 
tion N~. ~(-~e) is evidently a monotone-increasing 
function of/V~, whose shape depends upon the actual 
distribution of neuronal thresholds at x. Let G(~e) 
be the distribution function of excitatory neuronal 
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thresholds in the tissue. Then by definition 

' ~e ( /~e )=  ~ G(Oe) d O e .  
0 

Consequently SP e will be a monotone function of R e as 
required. In addition it is bounded by the asymptotes 0 
and 1, and if G(0e) is unimodal, See will have only one 
point of inflexion, and will therefore be sigmoidal in 
shape (see 5.2.6). The value of 2~ at which the inflexion 
occurs will be referred to as the aggregate threshold for 
the excitatory neurons in the tissue. Some experimental 
support for the sigmoidal form of 5Pe has been found in 
recordings from motoneuron pool discharges (Rall, 
1955) (see 5.2.7). 

To compute the number R e of excitatory neurons 
which are sensitive at the instant t, note that it 
comprises all those neurons which have not been 
activated in the interval from t -  r e to t. Evidently 

Re(x't)=[ 1 -  t-r~i E(x' T) dT] Oebx" 

If the expected number of excitatory neurons 
receiving at least threshold excitation during an 
interval 6t at t is statistically independent of the 
proport ion which is sensitive, then the expected 
number activated during the interval 6t at t + z  is 

E(x, t + z) ~Oe6X(~t = R e �9 ~e (Ne )  6t . 
In general there will be some correlation between the 
level of excitation in a neuron, and the probability 
that it is sensitive. However the correlation will be 
small in the densely inter-connected and redundant 
net considered (Wilson and Cowan, 1972) (see w 5.2.8). 

Similar considerations obtain for the inhibitory 
interneurons in the sheet. Thus the expected number 
of such neurons activated during the interval 6t at 
t+z  is 

I(x, t + z) Qi6x6t = Ri . 5~i(Ni) 6t 

where Ri(x, t) and ~(N/)  are appropriately defined. 
Introduction of the explicit forms of the expressions 

contained in these two equations results in the follow- 
ing equations for the neuronal activities generated in 
the sheet: 

E(x,t + r) Oe6X(~t=[1 - i E(x, T) dTI'OebX 
t - - r e  

(1.2.1) 

�9 ot(t -- T)  dT] 6t, 
l 

t - - r  i 

�9 e t ( t -  T) dT]  6 t .  (1.2.2) 

The expressions P(x, t) and Q(x, t) represent afferent 
impulses or stimuli from other regions of the brain, or 
from sensory end organs. It will be seen that the 
surface densities Oe and Qi cancel out in Eqs. (1.2.1) and 
(1.2.2), to leave equations for the activites E and I that 
are valid in the limit ax--,0, &-~0. 

1.3. Simplification of the Neuronal Tissue Equations 

Equations (1.2.1) and (1.2.2) provide a precise a 
representation of the phenomena involved in neuronal 
activation. These equations however are of a com- 
plicated non-linear character, and require considerable 
simplification to make them useful. Fortunately there 
are two ways in which the complexity may be sig- 
nificantly reduced without detracting from the physical 
plausibility of the equations. First, it is evident that 
if the average range of interaction between neurons 
is small compared to the velocities of impulse propaga- 
tion v~, then the time lags [x - X]/vj in Eqs. (1.2.1) and 
(1.2.2) will be negligible. Typical ranges of lateral 
interaction in Cat are of the order of 50 g (Sholl, 1956), 
whereas axonal conduction velocities are typically of 
the order of several mm per msec (Tasaki, 1959). Thus 
the time lags involved will be less than 0.1 msec (see 
w 5.2.9). This is very short compared to the membrane 
time constant/2 of several msec, so that it is legitimate 
to treat the conduction velocity vj as effectively 
infinite, and therefore to drop the time lag terms. 
Further support for this approximation will be 
provided later when it will be shown that the velocity 
of propagation of activity waves in the tissue is much 
slower than any reasonable estimate of axonal 
conduction velocity. 

The second simplification follows from the observa- 
tion that E and I appear on the right hand side of 
Eqs. (1.2.1) and (1.2.2) only as the time averages 

i E(x, T)dT, i I(x, T)dT, i E(x, T)c~(t- T)dT 
l - - r e  t - - r i  --  oo 

and 

i I(x, T) c~(t-- T) dT. 
- o o  
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Consider first the integrals involving the membrane 
impulse response e(t). By assumption e(t) is of the form 
c~exp(-t/it) where It, the membrane time constant, is 
of the order of several milliseconds. Thus both E and I 
are time averaged with a weighting function e(t) that 
damps out high frequencies. This suggests the introduc- 
tion of the expressions 

(E(x, t)) = 1 i E(x, T) e x p ( - ( t -  T)/It)dT 
I t  - oe 

and 

(I(x,  t)) = 1 i I(x, T) e x p ( - ( t -  T)/It)dT 
I t  - o r  

These equations are valid in the limiting case when 
6 t ~ O. It will be noted that they are partial differential- 
integral equations in which the integrals are spatial 
convolutions. As such they may be written in a more 
compact form. Let the convolution operation be 
denoted by the symbol | Then the simplified equa- 
tions can be rewritten as 

# ~ -  (E(x, t)) = - (E(x, t)) + [1 - re(E(x , t))] 

�9 5~e [~ It [e~ (E(x,  t)) | fle~(x) (1.3.1) 

- ei<I(x, t)> | fli~(x) + (P(x, t))]] 
and 

in place of E and I. It follows from the equation for ( E )  

that E(x, t) = It ~ t  (E(x, t)) + (E(x, t)) and therefore 

that 

E(x, T) d r  = 12 (E(x, T)) + (E(x, T)) dT. 
t - - r ~  t r 

In most cases the refractory period r e of cortical 
excitatory neurons is much less than the membrane 
time constant It, Oshima (1969). It follows that 
( E(x, t) ) ~ ( E(x, t - re) ) and therefore that 

t - -  r e 

Furthermore the synaptic delay z is usually an order 
of magnitude smaller than It, so that 

E(x, t  + z)&,,~ It ~ ( E ( x , t ) )  + (E(x , t ) )  fit. 

Similar considerations obtain for I so that Eqs. 
(1.2.1) and (1.2.2) can be rewritten in terms of the time 
averaged activities ( E )  and ( I ) ,  and take the forms 

0 
It ~ ( E(x, t) ) = -- ( E(x, t) ) + [1 -- re ( E(x , t))] 

. See ~ It ee ( E ( X ,  t ))  f lee(x" X ) d X  

- - o 0  

# ~  (I(x,  t)) = - (I(x,  t)) + [1 - ri (I(x, t))] 

"N c~It o e ( E ( X , t ) [ t e , ( x - X ) d X  

g 
p ~  <I(x, t)> = - (I(x, t)> + [1 - r,<I(x, t)>] 

�9 5~ [~it [~e <E(x, t)> | fle,(x) (1.3.2) 

- e~ G ( x ,  t)> |  + <Q(x, t )> ] ] .  

In effect Eqs. (1.3.1) and (1.3.2) are time coarse- 
grained versions of Eqs. (1.2.1) and (1.2.2) respectively. 
Time coarse-graining is a technique which was first 
applied to problems of statistical physics (Kirkwood, 
1946). Its validity in the present case depends of course 
on whether functionally relevant aspects of the 
activities E(x, t) and I(x, t) occur on a time scale that 
is sufficiently long compared to the membrane time 
constant #. A more detailed analysis (Wilson and 
Cowan, 1972) has already shown that the technique 
can in principle be applied to the activity of many 
cortical regions. Thus the oscillations observed in 
evoked potential studies typically have periods of 
40msec or more, which is much longer than any 
reasonable value for the neuronal membrane time 
constant (Andersen and Eccles, 1962; Freeman, 1967, 
1968a, 1968b; MacKay, 1970). Furthermore, the 
maximum rate at which a flickering visual stimulus 
is just perceptible, lies between 0.25 and 0.1 times the 
rate of discharge of retinal ganglion cells during the 
transient ON response (Brindley, 1971). This indicates 
that the limit of temporal resolution of the visual 
system is several times the length of the refractory 
period, i.e., in the range of the membrane time constant. 
Equations (1.3.1) and (1.3.2) thus provide a valid 
approximation for the types of dynamical phenomena 
to be analysed. 

1.4. The Functional Form of 5r and Constraints on 
Parameter Values 

An earlier study has shown that the qualitative 
properties of solutions of Eqs. (1.3.1) and (1.3.2) are 
independent of the particular analytical form of the 
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sigmoidal functions ~ (Wilson and Cowan, 1972). 
This is a valuable property of the equations, because 
of the difficulty in obtaining experimental determina- 
tions of the threshold distribution functions G(~i), and 
also because of the likelihood that these functions will 
differ in different cortical regions. It is therefore 
convenient to introduce the logistic curve, translated 
downward so that ~(0)  = 0, to serve as the representa- 
tive for ~ :  

~(Nr) = [1 + e x p ( -  v(N r - Or))] -x - [1 + exp(v Or) ] -~ 

The parameter Or, the aggregate threshold, determines 
the position of maximum slope of the function ~ ,  and 
the parameter v determines the value of the maximum 
slope through the relation 

[ d ~ ]  d~ j  v 
m a x ~ =  dNj  gj-oj = ~-" 

5~ e will be specified by the parameter values (v e, 0e) 
and ~ by the parameter values (v i, Oi). Figure 2 shows 
the graph of 5J~ for v r = 1, 0 r = 5. 

1.0 

~0.5 
I 

10 
• 

Fig. 2. A typical sigmoid function. The particular function shown 
here is the logistic curve: ~ ( N j ) =  [1 +exp(-vj(Ni-Oj))] I with 

0 j=5 and v j =  1 

values for the parameters brr, and air,. Physiological 
considerations have therefore been used to obtain 
constraints on these parameters. The first considera- 
tion is that the resting state, <E> = (I> = 0, be stable 
for small perturbations. This is an important form of 
noise-insensitivity, essential to the normal functioning 
of cortex. A sufficient condition for such stability is 
that 0 e be sufficiently large compared to the product 
O~eVebeeo'ee, and that 0 i be sufficiently large compared 
to QeVibii(Tii (see w 5.1). 

The second consideration is that no uniformly 
excited state should be stable in the absence of a 
maintained stimulus. Such an activity state is not 
found in normal physiological preparations, and 
could only correspond to conditions of seizure. Since 
the functions 5~ have unity as their maximum value, 
the maximum attainable values of (E> and (I> are 
[1 + re-] - 1 and [1 + ri]- 1 respectively. Therefore the 
following inequalities are sufficient to ensure that 
such an activity state will not occure (assuming that 
~ = Q i  = 1): 

[1 + re-] -x . 2 b ~ a ~ e - [ _ l + r l - ]  - 1  .2bieaie<Oe (1.4.1) 

and 

[ l + r ~ - ] - l . 2 b ~ i a e i - [ l + r i - ] - l . 2 b i i a i i > O i  . (1.4.2) 

These inequalities are obtained by integrating the 
functions fl#,(x) over the interval ( -o% oo). The 
second inequality ensures that uniform high level 
excitatory will generate uniform high level inhibitory 
activity, while the first ensures that the inhibitory 
activity will in turn be strong enough to extinguish the 
excitatory activity. The subsequent decline of 
excitatory activity is necessarily followed by a decline 
of the resultant inhibitory activity (see w 5,2.11). 

The third and final constraint is that excitatory to 
inhibitory interactions must be of longer range than 
excitatory to excitatory interactions. That is: 

(Tel > a e e ,  (1.4.3) 

As noted in w 1.0, exponentials have been chosen 
for the connectivity functions fljr,(x): 

flrr'(x) = brr, exp ( - Ixl/a~r, ) . 

It is possible that Gaussians would have been a more 
propitious choice, but here again the qualitative 
results are independent of the form of t i f f (x ) ,  so long 
as it is monotone-decreasing with Ixl (see w 5.2.10). 
With the exception of SholFs data (Sholl, 1956) 
suggesting that typical length constants for neuronal 
fields in Cat striate cortex are of the order of 50 lain, 
there is at present very little data from which to infer 

This assumption is supported by strong anatomical 
and physiological evidence (Colonnier, 1965; Szenta- 
gothai, 1967; Scheibel and Scheibel, 1970; Bishop e t  at. ,  
1971). As will be seen, the net effect of this inequality 
is to spatially localise excitatory activity, and to prevent 
the propagation of activity waves as obtained by 
Beurle (1956). 

To these various constraints must be added 
several conventions that have been followed through- 
out this study. The first is that the aggregate threshold 
for excitatory neurons 0 e is always about 10 (in units 
of excitation) in keeping with observations by Eccles 
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(1965) on the thresholds of motoneurons and py- 
ramidal cells. Secondly, the neuronal membrane time 
constant p has been assigned a value of 10 msec. Such 
a value gives reasonable values for the frequency of 
oscillatory evoked potentials in spatially localised 
aggregates (Wilson and Cowan, 1972). Thirdly, the 
refractory periods r e and r~ are both equal to 1 msec, a 
value that is reasonable for the duration of the 
absolute refractory period (Eccles, 1965). The effect 
of this is simply to fix the maximum attainable values 
of <E> and <I> at 0.5. Lastly, the values of the length 
constants trjj,, are all within a range around 50 ~tm, as 
suggested by ShoWs data (Sholl, 1956). 

Although all these parameter values are definitely 
of the correct order of magnitude, no great significance 
need be attached to the particular values chosen, since 
the qualitative properties of the model are invariant 
to changes in such values over any reasonable range 
(see w 5.2.12). 

2. Elementary Properties of the Model 

2.0. Spatially Localised Aggregates 

Prior to the analysis of Eqs. (1.3.1) and (1.3.2) it will 
be useful to review briefly the qualitative aspects of the 
activity generated within localised neuronal aggregates 
(Wilson and Cowan, 1972). These aggregates comprise 
interconnected excitatory and inhibitory neurons 
which are so closely packed together that all activity 
is spatially constant throughout the aggregate. In 
w aggregates of this type were identified with 
cortical columns. The activity generated within such 
aggregates is represented mathematically by a simpli- 
fied form of Eqs. (1.3.1) and (1.3.2) in which the con- 
nectivity functions fljj(x) are assumed to be constant 
over the aggregate. Thus the convolutions <E(x, t)> 
| fl~e(x) and <I(x, t)) | fl~i(x) are replaced by fl)e<E(t)) 
and fl)i (I(t)> respectively, where fl)j, are appropriately 
defined. The equations therefore become 

d 
P~-t  <E(t)> = - (E(t)> + [-1 - re<E(t)>- ] 

�9 ~9~e [~1A [flZee <E(t)> -- fl'ie <I(t)> + <P(t)>]] (2.0.1) 

and 

# ~ t  <I(t)> = -- <I(t)> + 1-1 - ri<I(t)> ] 

�9 5~ [~p  [fie, <E(t)> - fl'i, < l ( t )> _+ < Q ( t ) > ] ] .  (2.0.2) 

The major features of the solutions of these equations 
are listed below. 

2.1. Local Properties of the Activity 

2.1.1. Hysteresis. Localised aggregates, as repre- 
sented by Eqs. (2.0.1) and (2.0.2), may be excited to a 
high level of activity, which subsequently is sustained 
by a much lower excitation than was necessary to 
trigger the change�9 In other words, multiple stable 
steady states may occur with the transitions between 
them forming hysteresis loops�9 There is a threshold 
for the excitation or stimulus intensity required to 
trigger this change of state within a given aggregate. 
There is a strength-duration law for threshold excita- 
tions, so that localised aggregates exhibit temporal 
summation. 

2.1.2. Limit Cycles. Limit cycle oscillations of the 
activity may be obtained in response to constant 
stimulation�9 There is a threshold value of stimulus 
intensity for the generation of such oscillations�9 For 
super-threshold stimuli, the frequency of limit cycle 
oscillations is a monotone-increasing function of 
stimulus intensity. For extremely intense stimuli, limit 
cycle activity extinguished as the aggregate becomes 
saturated. 

2.1.3. Hysteresis--'-;Limit Cycles�9 If stimuli to 
excitatory and inhibitory neurons within an aggregate 
are independently variable, then the aggregate may 
exhibit either limit cycle activity or hysteresis switching 
between different steady activity states, depending 
upon the relationship between the two sets of stimuli. 

These properties will be seen to extend and 
generalise with the introduction of spatial interactions. 

2.2. The One-Dimensional 71ssue 

Numerical solutions of Eqs. (1.3.1) and (1.3.2) have 
been obtained for various sets of parameters satisfying 
the constraints given in w 1.4. These solutions illustrate 
three qualitatively different dynamical modes: active 
(self-generated) transient responses followed by a 
relaxation to the resting state, spatially localised limit 
cycles, and spatially inhomogeneous stable steady 
states that reflect attributes of prior stimuli (see 
w 5.2.13). Typical values of the parameters that give 
rise to each of the three forms are shown in Table 2. 
These values have been used in all the calculations 
reported in this article. The three dynamical forms, 
associated as they are with different sets of values of 
the various parameters, may be though of as charac- 
teristic of anatomically distinct specialisations of 
sheets of nervous tissue, each serving different func- 
tions, in differing regions of cerebral cortex or 
thalamus. 
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Table 2. Parameters 

Parameters  Active transient Oscillatory Steady-state 
(%y in gm) mode mode mode 

v~ 0.5 0.5 0.5 
0~, 9.0 9.0 9.0 
v i 0.3 1 0.3 
0 i 17.0 15.0 17.0 
bee 1.5 2.0 2.0 
a~,~ 40.0 40.0 40.0 
bie 1.35 1.5 1,35 
ale 60.0 60.0 60,0 
bei 1.35 1.5 1,35 
aei 60.0 60.0 60,0 
bli 1.8 0.1 1,8 
aii 30.0 20.0 30,0 
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2.2.1. Active Transients. The self-generated transient 
response will be referred to simply as the "active 
transient". In this mode, the response to a brief 
localised stimulus of adequate intensity continues to 
increase even after cessation of the stimulus. The 
activity therefore reaches a peak value after the 
stimulus has ceased, and then decays back to the 
resting state. Figures 3 and 4 show two examples of 
the active transient. In each case the stimulus is a 
spatial square-wave of the form 

<P(x,t)>= for L I ~ x < : L  2 

for x > L 2 

applied for a duration At. By assumption <P(x, t)> 
excites only excitatory neurons within the tissue. If the 
width of the stimulus, L 2 - -  L 1, is sufficiently small, the 
excitatory response <E(x, t)> developes a single spatial 
maximum located at the centre of the segment 
originally stimulated. Moreover the excitatory re- 
sponse does not spread to any appreciable extent, but 
as a consequence of the longer ranged inhibitory 
effects which it evokes [see Eq. (1.4.3)] remains 
localised within the stimulated segment. 

Figures 3 and 4 indicate that there is a threshold 
for the generation of active transients. Figure 3 shows 
that temporal summation is involved in reaching the 
threshold: a stimulus of supra-threshold intensity P 
will generate an active transient if and only if it is of 
sufficiently long duration At. It may be concluded 
that for stimuli of constant width, there is a strength- 
duration law of Block type (Le Grand, 1957). 

At supra-threshold levels of excitation, the latency 
of the peak response decreases with increasing 
stimulus intensity (see Fig. 3). This phenomenon is 
characteristic of many sensory systems, notably the 

Fig. 3. Temporal  summat ion and latency effects in the active 
transient mode. <E(xo, t)> is the excitatory activity at the center of 
the narrow region stimulated. Stimulation begins at t = 0  and 
continues until the time indicated by the arrow on each curve. 
Stimulus width is 80 gm. Stimulus intensity is indicated by P values. 
The two curves for P =  3.7 demonstrates the role of temporal 
integration in reaching threshold, while the superthreshold curves 
for P = 3.7 and P = 4.7 show the decreased latency to peak response 

as a function of increasing stimulus intensity 

0./, I I I i I 

A 0.3 

x 0.2 
U J  

V ! 

0.1 I 
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Fig. 4. Spatial summat ion in the active transient mode. <E(xo, t)) 
is the excitatory activity at the center of the excitatory activity at 
the center of the region stimulated. The widths of the stimuli are 
80 lam and 200 lam. Both stimuli are of intensity P = 3.7, and both 

are presented for 5 msec 

visual system (Donchin, 1967; Hartline, 1938). It will 
be shown later that variable latency is important for 
the understanding of metacontrast effects. 

Figure 4 indicates that spatial as well as temporal 
summation is involved in reaching the threshold for 
the generation of active transients. Thus a narrow 
stimulus applied for 5 msec fails to trigger the active 
transient, whereas a wider stimulus of the same 
intensity and duration evokes the transient. Spatial 
summation is also a characteristic property of the 
visual system. 

It is in fact evident from the form of Eqs. (1.3.1) and 
(1.3.2) that absolute thresholds exist for stimulus width, 
intensity and duration. Thus stimuli that are too 
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narrow can never evoke active transient regardless 
of their intensity and duration. Similarly, stimuli that 
are too weak can never evoke active transients 
regardless of their width and duration, and so forth 
such threshold properties may be regarded as im- 
portant forms of noise insensitivity in both cortical 
and thalamic tissue. 

2.2.2. Edge Enhancement. If stimuli even wider than 
those discussed above are applied to the tissue, an 
important new phenomenon occurs during the course 
of the active transient. This is the phenomenon of edge 
enhancement. Figure 5 shows a series of profiles of 
(E(x, t)) at various instants following the cessation of 
the stimulus. It will be seen that a definite edge 
enhancement occurs, at about the time the active 
transient reaches its maximum wlue. The enhancement 
is then sustained throughout the decaying phase of the 
response. It is important to note that a definite latency 
exists before edge enhancement developes. Such a 
latency has been observed in psychophysical experi- 
ments (Kahneman, 1965), and is of the order of 40 msec 
(see w 5.2.14). Equations (1.3.1) and (1.3.2) predict 
latencies that are somewhat smaller than those 
observed in Kahneman's experiments (some 15 msec 
in the example shown in Fig. 5). The discrepancy may 
be accounted for by the observation that the visual 
pathway from retina to cortical area 18 comprises four 
distinct sheets of tissue (retina, lateral geniculate 

0 . , ~  t I I I I I 

< E lx ,h ) >  0.I 

<I tx,t,l> ~ _"3,_ 
i t I I t 1 
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< I l x ' t 2 )>  . . . . . .  
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<E(x,t 3)> 0 
< I ( x,t 3)> 
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Fig. 5. Sequence of spatial profiles of neural activity showing the 
latency associated with the edge enhancement effect. The region 
stimulated is indicated at the bottom of the first panel. Excitatory and 
Inhibitory activities are indicated by solid and dashed lines re- 
spectively. The first panel shows the activities at the end of the period 
of stimulation, while the second and third show activity at progres- 

sively later times 

Table 3. Effect of increasing stimulus intensity on maximal neural 
response 

Intensity E (75, t~x) E,,~x (edge) Effective width 

3.4 0.072 0.084 280 
3.7 0.151 0.195 320 
6.0 0.230 0.284 500 

0.3 

AO.2 
--~ 
,T, 
VO.I 

i i 

t I 
200 400 600 800 I000 
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Fig. 6. The size-intensity effect in the active transient mode. (E(x)) 
is plotted at the instant at which the edge response was maximal. 
The stimuli are of constant width, with differing intensities as 

indicated 

nucleus, cortical area 17, and cortical 18), that the 
psychophysical experiments almost certainly involve 
a]l these sheets, and that their separate tatencies add. 

Another important property of the edge en- 
hancement effects generated by Eqs. (1.3.1) and (1.3.2) 
is shown in Table 3 and in Fig. 6. It will be observed 
that the disparity between the two points in the tissue 
where maximum edge enhancement occurs, increases 
with increasing stimulus intensity. If such a disparity 
is utilised in the nervous system to measure stimulus 
size, then it is predicted that a more intense stimulus 
will be seen to be somewhat wider than a weaker 
stimulus of the same actual width. This prediction has 
been confirmed psychophysically (Zusne, 1971). This 
size-intensity phenomenon may also provide an 
explanation of the fact that form perception thresholds 
are significantly higher than thresholds for detecting 
the mere presence of a stimulus (Zusne, 1971). This 
possibility is being investigated in greated detail using 
a two-dimensional extension of the present model. 

2.2.3. Active Transients in Relation to Sensory 
Information Processing. Edge enhancement in the 
nervous system is perhaps best known in studies of the 
Limulus eye (Hartline and Ratliff, 1958 and Ratliff, 
1965) has stressed its importance in form perception. 
The two effects discussed in w 2.2.2, the latency and size- 
intensity effect for edge enhancement, are both 
critically dependent on active properties of the 
neuronal tissue model represented by Eqs. (1.3.1) and 
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(1.3.2). Such effects cannot be obtained by lateral 
inhibition alone, but in addition require recurrent 
lateral excitation. This suggests that active transient 
responses may be characteristic of primary sensory 
cortex. In the visual system, for example, it is known 
from studies with stabilised retinal images (Ditchburn 
and Ginsberg, 1952) and from microelectrode 
recordings in cortical area 17 (Burns, Heron, and 
Pritchard, 1962; Burns, 1968) that the burst discharge 
of ON-centre retinal ganglion cells is of prime im- 
portance in stimulating visual cortex. The use of 
stimuli of very short duration At in Eqs. (1.3.1) and 
(1.3.2) provides a crude representation of this ganglion 
cell discharge. It follows that active transients are of 
some importance in providing a means by which 
sensory processing can continue long after the ON- 
centre discharge triggered by a stimulus has subsided. 
These areas are elaborated in w 3 in which it is shown 
that several more complex psychophysical effects may 
be simulated by the active transient mode of the 
present model. 

2.2.4. Spatially Localised Limit Cycles. Consider 
now the second dynamical form of the solutions of 
Eqs. (1.3.1) and (1.3.2). In this form the response to a 
constant stimulus consists of limit cycle oscillations 
of (E)  and (I) .  Furthermore the response occurs only 
within the region of stimulation, and does not propa- 
gate, except under very special circumstances (see 
w 2.2.7). Figure 7 shows a sequence of spatial profiles 
of (E)  at successive instants during one period of the 
oscillation. Limit cycle oscillations differ from active 
transients in that, although they may be similar for 
stimuli that are of short duration compared to the 
period of the oscillation, the transients relax for 
constant maintained stimuli to constant (although 
spatially inhomogeneous) activity, whereas the oscilla- 
tions are stable and continue as long as the stimulus 
is applied. 

As one might expect, to generate sustained oscil- 
latory activity, stimuli must exceed an absolute 
threshold intensity and a minimum width. In addition, 
Fig. 7 indicates that edge enhancement occurs for 
sufficiently wide stimuli, whereas narrow stimuli do 
not show any edge enhancement. 

2.2.5. Limit Cycle Encoding of Stimulus Intensity. 
The salient characteristics of such oscillations are 
shown in Table 4. It will be seen that the frequency of 
oscillation increases monotonically with stimulus 
intensity, and that it is effectively independent of 
stimulus width. At very high stimulus intensities, 
however, the net inhibitory activity is insufficient for the 
generation of oscillations, and consequently the 
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Fig. 7. Three phases in a spatially localized limit cycle oscillation 
in response to a maintained stimulus with the rectangular profile 
shown at the bot tom of the first diagram. Solid line is (E(x)) ;  dashed 
line is (l(x)). Inset at the top shows temporal details of the oscillation 
at the point marked x 0 in the other diagrams. The times tl, t2, and t 3 
show the points on the cycle at which the spatial profiles are plotted 

excitatory activity stabilises at a high (saturated) value. 
It is doubtful that such a saturated state ever occurs 
under physiological conditions in cerebral cortex, for 
its realisation would require an extremely high 
density of afferent fibre synapses directly with 
excitatory neurons. It follows that below the saturated 
state, stimulus intensity may be uniquely encoded in 
terms of limit cycle frequencies. In addition since the 
limit cycles remain localised and exhibit edge 
enhancement, stimulus width may be encoded in terms 
of the disparity between activity peaks, as discussed in 
w 5.2.2. 

Table 4. Dependence of spatially localised limit cycle frequency upon 
stimulus intensity and stimulus width 

Stimulus Stimulus Frequency of limit cycle 
intensity width response (sec- 1 ) 

2.5 80 14 
2.5 600 14 
5 80 18 
5 400 18 
5 600 t8 

10 400 22 
10 600 23 
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Physiological evidence exists that certain sheets 
of tissue, thalamic rather than cortical, may indeed 
encode stimulus intensities in this fashion. In micro- 
electrode studies of thalamic somatic sensory neurons 
in Monkey, Poggio and Viernstein (1964) found that 
renewal density functions of the firing patterns of many 
units driven by joint angle receptors exhibited un- 
damped oscillations. The frequencies of these oscilla- 
tions were found to be monotone-increasing functions 
of joint angle. Although this evidence does not imply 
that aggregates of such units are firing in a cooperative 
oscillatory mode, it is what one would expect of the 
single unit properties deducible from Eqs. (1.3.1) and 
(1.3.2) given the constraints that generate limit cycles. 
Freeman (1968b) has observed similar relationships in 
evoked potentials obtained by macroelectrode record- 
ings from the olfactory bulb and pre-pyriform cortex 
of Cat. The frequencies of oscillation of such potentials 
are again monotone-increasing functions of stimulus 
intensity, and are consistent with the predictions of the 
model. 

2.2.6. Thalamic Oscillators. It is now well established 
that various thalamic nuclei are incapable of sustained 
oscillatory activity, and that these oscillations do not 
require feedback from cerebral cortex (Eccles, 1965; 
Andersen and Andersson, 1968; Purpura, 1970). 
Various mechanisms have been postulated to account 
for such oscillations, including rebound excitation from 
long lasting hyperpolarisation (Eccles, 1965; Andersen 
and Andersson, 1968). However Eccles (1965) has 
admitted that feedback excitation could also account 
for the observations and has postulated recurrent 
interactions within the ventrobasal complex of the 
thalamus that are essentially equivalent to those of 
Fig. 1. It is therefore suggested that Eqs. (1.3.1) and 
(1.3.2), suitably constrained to produce limit cycles, 
may serve to represent the specialisation of neuronal 
tissue to carry out appropriate thalamic functions. 

To test the hypothesis that limit cycle activity in 
the tissue model is related to thalamic activity, an 
attempt was made to reproduce recent observations by 
Purpura (1970) of frequency demultiplication in the 
responses of certain regions of the ventro-laminar 
nucleus of the thalamus. The observations are that 
under certain conditions VL neurons respond only 
to every second pulse in a stimulus pulse train. A 
stimulus consisting of a train of pulses each of duration 
5 msec at a frequency of 25 per sec was therefore 
applied to the tissue model. The pulse width was small 
enough so that no edge enhancement occurred. The 
excitatory activity generated by such a stimulus is 
shown in Fig. 8, where it is seen that the neuronal 
response does indeed occur at one-half the frequency 
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Fig. 8. Frequency demultiplication in the neural response to a 
st imulus pulse train. Each stimulus pulse had a narrow, rectangular 
spatial profile. (E(x0, t)) is the response at the center of the region 
stimulated. Durat ion of each st imulus pulse is 10 msec an an intensity 

of P = 5. Pulses are presented at a frequency of 25/sec 

of the stimulus train. By varying the frequency and 
intensity of the stimulus train, the neuronal response 
may be made to exhibit frequency demultiplication by 
1/3, 1/4, and so on. 

These results indicate that Eqs. (1.3.1) and (1.3.2) 
in the limit cycle mode may prove to be of value in 
theoretical studies of thalamic function, and of the 
consequent generation of some of the spatio- 
temporally organised rhythms seen in the EEG. The 
suggestion that the synchronised activities seen in the 
EEG (e.g., alpha, beta, delta, and theta rhythms) are 
generated by limit cycle oscillators, was first made by 
Dewan (1964). 

2.2.7. Travelling Wave Responses. It is well known 
that most regions of cortical and thalamic tissue 
receive both specific and non-specific afferents (Lorente 
de No, 1949). In view of the fact that non-specific 
afferents affect very extensive regions in a diffuse 
fashion, it seems evident that their function is to 
provide a tonic biasing or threshold-setting effect. 
Furthermore it is known that cortici-fugal feedback, 
e.g., from cortical area 18 to the lateral geniculate 
nucleus (Kalil and Chase, 1970) serves to inhibit 
inhibitory interneurons there, i.e., tonic biasing oper- 
ates by way of dis-inhibition. 

Consider therefore Eqs. (1.3.1) and (1.3.2) with 
specific afferent excitation 

i for x < L ~  
(P(x, 0)  = for LI<=X<L 2 

for x > L 2 

and with non-specific afferent inhibition of the form 

( Q ( x ,  t)> = - Q .  

(P(x,  t)) represents a spatial square wave whose 
width IL1-L2I is small enough to prevent edge 
enhancement from occurring. 

For sufficiently small Q, the solutions of Eqs. (1.3.1) 
and (1.3.2) are characteristic spatially localised limit 
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Fig. 9. Generation of traveling wave pair under disinhibitory binsing 
in the oscillatory mode. (E(x, t)> is indicated by a solid line, and 
(l(x, t)> by a dashed line. The region initially stimulated is indicated 
beneath the top graph, t l = 2 0 m s e c ;  t z=30msec ;  t 3=50msec  

cycles, although with a modified frequency-intensity 
relationship. For sufficiently large values of Q however, 
a qualitatively new form of solution appears: instead 
of remaining localised, the peak excitatory phase of 
each limit cycle gives rise to a pair of waves travelling 
in opposite directions from the point of excitation. 
A sequence of spatial profiles detailing the generation 
of such a wave pair is shown in Fig. 9. Wave pairs are 
generated once per cycle for as long as the stimulus 
persists, and each wave travels away from the locus 
of stimulation without attenuation. Thus, a very brief 
stimulus <P> will generate a single wave pair, whereas 
a stimulus of longer duration will generate a succession 
of such pairs. The propagation velocity corresponding 
to Q = - 3 0  is 4 cm/sec. In general this velocity is a 
function of Q, and of the connectivity parameters fljj,, 
and a~i,, but not of (P>, whereas the frequency and 
therefore the wave-length vary with (P> in a non- 
linear fashion. 

2.2.8. Waves and Rhythms in Cortex. Such a genera- 
tion of propagating wave-pairs as a consequence of 
non-specific dis-inhibition may be related to several 
physiological and psychophysical phenomena. For 
example, it is now known that in addition to the 
synchronised activities seen in the EEG, various 
desynchronized activities are also generated within 
sub-cortical structures (Andersen and Andersson, 

1968), and that there are tonic excitatory and inhibitory 
influences on cortex from such structures (Deme- 
trescu, Demetrescu, and Iosif, 1965). These inter- 
actions are extremely subtle and complex, and 
obviously cannot be accounted for by" any simple 
model such as that discussed in this paper. However, 
some of the observations suggest that wave propaga- 
tion and its quenching, of the type discussed here, may 
be involved in such interactions. For example recent 
observations by Freeman (personal communication) 
of spatio-temporal evoked potentials recorded from 
the surface of the olfactory bulb and pre-pyriform 
cortex indicate that both spatially localised oscilla- 
tions and propagating waves obtain under differing 
experimental conditions. It therefore seems likely that 
with suitable elaboration, the model described above 
will prove to be of some utility in the analysis of such 
complex phenomena. 

There is in fact a related but somewhat simpler 
set of observations on isolated (undercut) cortex 
(Burns, 1951). In such a preparation, electrical stimula- 
tion of one locus on the cortical surface generates 
waves that propagate without attenuation to the 
boundaries of the isolated region. On the assumption 
that under-cut cortex is dis-inhibited, wave generation 
and propagation, as in the tissue model, is to be 
expected following localised stimulation of the cortical 
surface. However, the propagation velocity of 20 cm/sec 
observed by Burns (1951) is significantly higher than 
that obtained from the tissue model, suggesting that 
spatial interactions in cortex are longer ranged than 
those incorporated in the model. 

Burns (1958, 1968) has suggested that such waves 
may be related to the activity waves discussed by 
Beurle (1956). However, the neuronal medium con- 
sidered by Beurle contained only excitatory neurons 
whose refractory periods were of sufficient duration 
so that each could be activated only once during the 
passage of a wave. In the tissue model presented here, 
the mechanism of wave propagation is quite different. 
Each neuron may fire many times during the passage 
of a wave front, but such activity generates enough 
inhibition in its wake to quench the excitation as the 
wave passes. The inordinately long refractory periods 
required in Buerle's model make it seem much less 
plausible than the excitatory-inhibitory model sug- 
gested here. 

2.2.9. Spatially Inhomogeneous Steady States. The 
third form of the solution of Eqs. (1.3.1) and (1.3.2) 
consists of spatially inhomogeneous stable steady 
states of activity. [The existence of spatially homo- 
geneous steady states is precluded by the inequalities 
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Fig. 10. Spatially inhomogeneous stable steady states of neural 
activity generated in response to two different stimuli. (E(x)) is 
represented by a solid line and (I(x)) by a dashed line. The rectan- 
gular inset below each graph shows the spatial configuration of the 
stimulus used to excite the tissue to each of the steady states. Once 
established by brief stimulation, the neural activity is self-maintained 

(1.4.1) and (1.4.2).] Once reached such states are 
maintained by neuronal activity within the tissue 
without need of any further afferent stimulation. 
Two examples of these activity states are shown in 
Fig. 10 together with their generative stimuli. It is 
apparent that broad spatial square waves generate 
two peaks of activity approximately located at their 
edges, whereas sufficiently narrow stimuli generate 
only one peak. As one might expect, there is a threshold 
for the triggering of such stable peaks, related to the 
width, intensity, and duration of the applied stimuli 
in the conventional fashion. 

2.2.10. A Possible Mechanism for Short Term 
Memory. The functional significance of these stable 
steady states becomes manifest with the observation 
that the two-dimensional generalisation of Eqs. (1.3.1) 
and (1.3.2) also generates stable steady states that 
reproduce the contours of prior two-dimensional 
stimulus patterns. (Preliminary studies of the two- 
dimensional case have confirmed this.) Such states may 
provide a mechanism that could account for short- 
term memory, and may be thought of as a complex 
spatial generalisation of dynamical hysteresis, a 
phenomenon first suggested as the physiological basis 
for short term memory by Cragg and Temperley 
(1955). Thus the contours of any brief but supra- 
threshold stimulus will be actively stored as a pattern 
of neuronal activity until erased by sufficiently strong 
afferent inhibition of excitatory neurons in the sheet, 
or by an equivalent afferent excitation of inhibitory 

interneurons. Spatially localised activity of this type 
may also be thought of as resulting from localised 
reverberation: activity may circulate among neurons 
in the excited region in such a manner that the total 
activity at each point remains constant. The inter- 
pretation of spatially inhomogeneous stable steady 
states as a basis for short term memory is therefore 
compatible with Hebb's theory (Hebb, 1949). 

Although this discussion of short term memory 
has been largely hypothetical, recent experiments by 
Fuster and Alexander (1971) provide some physio- 
logical support for the postulate. In these experiments 
Monkeys were trained to perform delayed response 
discriminations. During the interval between cue 
presentation and execution, marked increases were 
observed in the firing rates of neurons in prefrontal 
cortex and in the medial dorsal nucleus of the thalamus. 
Increases of up to ten times the resting discharge rate 
were observed which persisted for as long as one 
minute. These microelectrode recordings are what one 
would predict from the solutions of Eqs. (1.3.1) and 
(1.3.2) in the steady state mode. 

2.2.11. Specifying the Different Solution Modes. The 
fundamental role played by the various parameters of 
Eqs. (1.3.1) and (1.3.2) in determining the dynamical 
mode of the solutions is obvious. Unfortunately the 
equations are so complex as to preclude the analytic 
determination of either necessary or sufficient condi- 
tions for the specification of each of the three forms of 
solution. Nevertheless, qualitative relationships be- 
tween the sets of parameters that generate the different 
forms are evident in Table 2 (see w 2.2). Certain pre- 
dictions based on these relationships have been tested 
and verified by numerical integration of the equations. 

It will be seen from Table 2 that the parameter sets 
which lead to the active transient and steady state 
modes differ only in the value of the parameter bee. 
Since bee measures the strength of lateral excitatory- 
excitatory interactions, it follows that mode switching 
from steady states to active transients may be effected 
by decreasing the strength of excitatory (positive) 
feedback within the model tissue. Conversely, by 
increasing the strength of excitatory feedback, stable 
spatially inhomogeneous steady states can be created. 
This suggests the possibility that one of the effects of 
learning may be the creation of new large-scale stable 
states of activity in cortical tissue by way of the 
modification of excitatory-excitatory synapses. Such 
possibilities require further investigation. 

The relationship between the parameter set deter- 
mining the limit cycle mode and those determining the 
other two modes is much more complicated. The 
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major differences are in the values of the parameters 
bie, bei and b u. In the limit cycle mode bie and be~ are 
larger, and bli is smaller than in the other modes. In 
effect, there is stronger negative feedback within the 
model tissue as a consequence of the increased 
strength of excitatory-inhibitory-excitatory circuits 
and a descreased strength of inhibitory-inhibitory (or 
dis-inhibitory) circuits. In addition, the parameter vl 
is also greater in the limit cycle mode. This implies an 
increase in the maximum slope or sensitivity of the 
aggregate response function 5~/(Ni) (see w 1.4), and 
therefore a decrease of the range between resting and 
saturated activity of the inhibitory interneurons in the 
tissue. It seems that by sharpening the inhibitory 
response function, the instability necessary for limit 
cycle oscillations is created. The slightly lower value 
of the aggregate threshold 0i, is not critical (see w 1.4). 

There are clearly other possibilities in the relation- 
ships among the various parameter sets. For example, 
increasing ai~ or aei should produce similar effects to 
those obtained by increasing b~ or b~. Further insight 
into such possibilities may perhaps be obtained from 
the analysis of spatially localised aggregates developed 
in a previous paper (Wilson and Cowan, 1972). 

3. Three Sensory Experiments 

3.0. Introduction 

In w 2 it was suggested that neuronal tissue in the 
active transient mode might be involved in sensory 
information processing. In this section it will be shown 
that the active transient response can serve to provide 
plausible explanations for a variety of psychophysical 
observations associated with the visual system. In 
discussing the various experiments, it is to be em- 
phasised that the same parameters are used throughout 
(those listed in Table 2 that generate active transients): 
only stimulus parameters are varied for the different 
experiments. 

3.1. Spatial Modulation Transfer Functions 

The spatial modulation transfer function is a 
measure of the response of the visual system to 
different spatial frequencies. In the first sensory 
experiment this function was determined for the model 
tissue in the active transient mode. To accomplish this 
the excitatory neurons were stimulated for a duration 
A t = 5 msec with spatially varying afferent excitation 
of the form 

k [ {2nltx~] 

where n is an integer. Subsequent to this stimulation 
excitatory activity in the tissue continued to increase 
until a maximum amplitude was reached at a latency 
of approximately d t = 10 msec, after which the activity 
decayed to the resting state. In all cases the response 
was spatially periodic, with a frequency equal to that 
of the stimulus, but because of the non-linearities in 
Eqs. (1.3.1) and (1.3.2), the actual waveform was not 
sinusoidal. The maximum peak to trough amplitude 
of the excitatory response (E(x, t)>, was chosen as a 
measure of the sensitivity of the model tissue to 
stimulation at each spatial frequency. Figure 11 shows 
this amplitude plotted as a function of spatial 
frequency, for stimuli of constant amplitude. 
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Fig. 11. Spatial modulat ion transfer function of the tissue model. 
Stimulation is brief and of the form: 

/ 2nnx \  
<P(x)> = I + COS { - ~ - - |  \ / 

(E,.a, - Emin> gives the maximum peak to trough amplitude of the 
excitatory response 

The attenuation of both low and high spatial 
frequencies exhibited by the model is consistent with 
the properties of the modulation transfer function for 
the Human visual system, as measured psychophysical- 
ly (Campbell and Green, 1965). Such measurements 
involve the determination of contrast thresholds for 
distinguishing spatially varying gratings from a Ganz- 
feld. Since the model exhibits both threshold phe- 
nomena and spatial summation, it is clear that results 
similar to those shown in Fig. 12 can be obtained from 
the determination of threshold sensitivities to spatially 
varying gratings. However such threshold determina- 
tions require large amounts of computer time and 
have not been carried out. 

It has been suggested that the spatial modulation 
transfer function for the visual system is formed by the 
optical attenuation of high frequencies by the lens, 
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and the neuronal attenuation of low frequencies by 
lateral inhibitory nets (Ratliff, 1965). Campbell and 
Green (1965) used laser generated interference f fringes 
to show that the optical properties of the Human eye 
con contribute little to the high frequency attenuation, 
and therefore that it must be mainly neuronal in origin. 
The computations reported here show that the neuro- 
nal tissue model incorporating recurrent lateral excita- 
tion in addition to recurrent lateral inhibition [subject 
to the inequality of (1.4.3)] can account for the spatial 
filtering properties of the Human visual system. The 
available evidence does not permit one to speculate 
however, on the precise anatomical location where 
this filter occurs. 
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3.2. Metacontrast Phenomena 

3.2.0. Introduction. In a second series of model 
experiments, various spatio-temporal interactions of 
the metacontrast type have been investigated. Meta- 
contrast is defined as the perceptual masking of a 
brief target stimulus by a second stimulus presented 
subsequently at a location in the visual field that does 
not overlap that of the target (Kahneman, 1968). All 
psychophysical experiments on metacontrast involve 
two-dimensional targets, such as discs or alphanumeric 
characters, and a two-dimensional mask that is either 
an annulus encircling the area of target presentation, 
or else a pair of bars flanking it (Kahneman, 1968; 
Kohlers, 1962; Kohlers and Rosner, 1960). Since only 
one dimensional spatial patterns are considered in 
this paper, it is obviously impossible therefore to 
replicate the actual psychophysical experiments. In- 
stead, one dimensional bars have been used as target 
stimuli, and pairs of such bars as masks. The problem 
thus reduces to a consideration of one-dimensional 
interactions. The results obtained in this fashion may 
be expected to hold for rectangular bars that are much 
longer than they are wide. Whether of not qualitative 
differences are likely to arise in more complex two- 
dimensional cases will be discussed later. 

3.2.1. Type A Masking. The procedure adopted was 
to stimulate the tissue model with a target bar of 
specified width and supra-threshold intensity for an 
interval of duration A t = 5 msec. The response was 
allowed to form unimpeded for a variable interval, at 
the termination of which masking bars of the same 
width but greater intensity than the target were 
presented, at locations flanking but not overlapping 
the locus of target presentation. The spatial relation- 
ships are shown in the inset of Fig. 12. To measure the 
degree of masking, responses to the target alone were 
compared with responses to the target followed by the 

30 

Fig. 12. Type A metacontrast  effects in the active transient mode. 
<E(xo, t)) is the excitatory response at the point of target presenta- 
tion, as indicated in the inset. Figures on the curves are times at 
which masking bars are presented at the locations shown by cross- 
hatching in the inset. The dashed line indicates the unmasked  result. 
Target presentation is for 5 msec, and the relative intensities of 

target and mask  are given by heights of bars in the inset 

mask. The results are shown in Fig. 12 for various 
intervals between target and mask presentation. In 
each case the width of the target was chosen to be 
sufficiently narrow so as to preclude edge enhancement, 
so that the target response might be accurately 
represented by a temporal graph of the activity 
generated at the centre of the target location (see inset, 
Fig. 12). 

It will be noticed that unless the interval between 
target and mask is short, the mask has little effect on the 
maximum target response, but affects mainly the 
decaying phase of the target response. However it 
will be recalled that the tissue model exhibits temporal 
summation (Fig. 3, w so that an appropriate 
measure of the target response is not the maximum 
value attained, but the integral of the response over 
its entire duration, i.e., the area under each curve shown 

z 

in Fig. 12, or ~ <E(x, T)> d T. Using this integral to 
0 

measure masking, it will be seen that masking is a 
monotone-decreasing function of the interval between 
target and mask presentations. Other computations 
have shown that the degree of masking is also a 
monotone-decreasing function of the distance between 
target edges and the inside edges of the masking bars. 

The monotonic masking shown in Fig. 12 has been 
designated type A by Kohlers (1962). Typically, type A 
masking functions measured psychophysically show 
strong effects even if masks are presented as long as 
50 msec after targets. One might anticipate that such 
long intervals would not lead to masking in the model. 
In type A masking however, the mask is typically of 
much higher contrast than the target. It was shown 
in w that high intensity stimulation generates 
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active transients of very short peak latency; therefore 
the neuronal response to a high contrast mask may be 
expected to propagate through retina, lateral geni- 
culate, and several cortical areas at a much higher 
velocity than the target response. The mask response 
can therefore reach cortex concurrently with the 
target response, even if it is initiated some 50 msec 
after the target response. This implies that the location 
of the neuronal interactions leading to type A masking 
must be cortical. The fact that type A masking may be 
obtained in dichoptic stimulus presentations (i,e., with 
the target presented to one eye and the mask to the 
other at the appropriate retinal location) (Kohlers, 
1962; Kahneman, 1968) supports the presumption 
that it is a cortical phenomenon. 

3.2.2. Type B Masking. A second non-monotone 
masking phenomenon exists, first observed by Kohlers 
and Rosner (1960) and designated type B by Kohlers 
(1962). In this type of masking the optimum effect is 
obtained if the mask is presented approximately 
50 msec after the stimulus has terminated. If the mask 
follows the stimulus with a very short delay, both 
stimulus and mask are perceived as simultaneous. If 
the interval between target and mask is very long 
however, the target and mask are perceived as con- 
secutive. The appropriate stimulus arrangements for 
realising type B masking are that target and mask be 
virtually contiguous and of equal intensities (Kahne- 
man, 1968). 

These stimulus conditions have been used in an 
effort to obtain type B masking within the tissue model, 
so far without success. Since the mask used in type B 
experiments is usually always an annulus, it is possible 
that the two-dimensional model will reproduce the 
phenomenon, but this has yet to be attempted. What- 
ever the outcome, there is one detail which suggests 
that there may be a fundamental difference between 
type A and type B masking. In type B masking, both 
target and mask are of equal intensity and therefore 
will generate responses of equal latency. There can 
therefore be no question of mask responses arriving 
at cortex concurrently with target responses, as 
postulated for type A phenomena, so that propagation 
through successive sheets of neuronal tissue cannot 
account for the occurrence of optimal type B masking 
effects at a delay of around 50 msec. There is another 
interesting possibility. It is now known that corticifugal 
fibres to the lateral geniculate nucleus originate almost 
entirely from cortical area 18 in Cat (Hollander, 1971). 
The proper latency for optimal type B masking would 
obtain if such effects were the result of interactions 
within the lateral geniculate nucleus of retinally 

generated mask responses and cortical feedback of 
target responses. If this were the case, all aspects of 
type B masking could be readily explained: simultane- 
ous presentation of target and mask would lead to the 
simultaneous perception of both stimuli; since both 
stimuli are of equal intensity, neither could mask the 
other. [Actually, masking is mutual but weak for both 
stimuli in this case, in both model and psychophysical 
experiments (Kahneman, 1968).] The optimal delay 
of 50 msec would then be accounted for as the delay 
necessary to produce maximum interactions of retinal 
and cortical responses in the lateral geniculate nucleus. 
This possibility is currently being examined in greater 
detail. 

3.3. Spatial Hysteresis in Binocular ldsion 

3.3.0. The Fender-Julesz Experiment. In the final 
series of model experiments reported in this paper an 
important phenomenon based on binocular fusion has 
been investigated. This phenomenon was discovered 
by Fender and Julesz (1967) in the course of ex- 
periments with stabilised retinal images. Binocular 
stabilisation techniques were used so that the locations 
on the retinae of identical patterns simultaneously 
presented to the two eyes could be independently 
controlled. These patterns are initially presented with 
zero binocular disparity, so that subjects report seeing 
the patterns as a single fused percept. The patterns are 
then slowly and symmetrically moved apart on the 
two retinae until the subject perceives a double image. 
At this point the direction of pattern motion is reversed, 
and the patterns are slowly moved together until the 
subject again perceives a single fused image. The 
surprising result is that the actual retinal disparities 
necessary for refusion are always significantly less than 
those required to maintain fusion once it has been 
established. Thus a form of spatial hysteresis is 
operative in stereopsis (see Fig. 3 and 6 of Fender and 
Julesz, 1967). 

Since there are topographic projections from retina 
to striate cortex, it can be supposed that retinal 
stimulus disparities produce equivalent disparities in 
the resultant cortical responses, and that spatial 
hysteresis is a cortical phenomenon associated with 
stereopsis. In view of the demonstrable existence of 
hysteretic effects in spatially localised neuronal ag- 
gregates (w 2.1.1 and Wilson and Cowan, 1972), it is 
appropriate to look for spatial hysteretic effects directly 
analogous to those discussed above in the one- 
dimensional tissue model. 

3.3.1. Spatial Hysteresis in the One-Dimensional 
Tissue Model. In the one-dimensional model all stimuli 
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are equivalent to vertical bars. However one of the 
stimulus patterns used by Fender and Julesz (1967) 
was a single vertical bar, so that no difficulties arise in 
considering the experiment as a one-dimensional 
spatial problem. 

It was assumed that the retinal stimuli could be 
reasonably approximated by a pair of sharply peaked 
Gaussian distribution functions, one for each eye. 
These stimuli were equal in amplitude and shape 
throughout the experiment, and were assumed to 
represent the maintained retinal discharge rather than 
the transient ON response, since it must be supposed 
that under the high contrast stabilised image condi- 
tions employed by Fender and Julesz, the maintained 
retinal discharge, rather than the transient ON re- 
sponse, provided the effective stimulus to cortex. Initial- 
ly the two Gaussian stimuli were placed in exact register 
on the tissue model and summed point by point to 
produce the net (binocular) stimulus. The active 
transient response was then allowed to develope and 
reach equilibrium (because of the intense and sus ta ined  

stimulation, the active transient does not in this case 
decay to the resting state). Following this the two 
stimuli were symmetrically moved apart by a small 
increment, re-summed, and the neuronal response was 
again allowed to reach equilibrium. This procedure 
was repeated to produce increasing stimulus disparity. 

Mathematically this stimulation routine may be 
written as 

<P(x ,  t)> = k [exp( - (x  - v t ) z /a  2) + exp( - (x  + ~ t ) 2 / a z ) ] ,  

where v is the (small) velocity at which the two "retinal" 
stimuli are moved apart, and a measures the width of 
each Gaussian stimulus. In the model experiment the 
continuous velocity v was approximated by shifting 
the two stimuli apart in small steps at a constant (slow) 
rate. 

Initially with the two stimuli in exact register, the 
response consisted of a single peak of sustained high 
level activity as shown in Fig. 13a. As the disparity 
between the two stimuli increased, the response con- 
tinued as a single peak located at the mid-point of the 
binocular stimulus until a critical disparity was reached. 
At this stimulus disparity, the single peak response 
decayed rapidly to zero, and twin response peaks 
formed at the locations of the now rather widely 
separated stimuli. A spatial profile of this response is 
shown in Fig. 13b. Further increases in stimulus 
disparity merely produced further corresponding 
increases in the disparity of these response peaks. 

Following this the stimuli were gradually moved 
together again in the same fashion. Again a critical 
disparity was reached at which the response pattern 
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Fig. 13. Neural activity at three stages of the Fender-Julesz hysteresis 
loop. (E(x, t)) is plotted as a solid line and (I(x, t)) as a dashed line. 
A, B, and C indicate the points on the hysteresis loop in Fig. 14 at 
which the activities are plotted. Positions of the maxima of the 
Gaussian stimuli are indicated under each graph by the solid 
triangles. Note that although the stimuli are further apart in A than 
in C, the response in A is a single peak, whereas the response in 

C exhibits twin peaks 

switched from two peaks of activity to a single peak. 
However, this critical disparity was much smaller than 
the first critical disparity described above. The 
difference may be seen by contrasting Fig. 13c with 13a. 
Although the stimulus disparity shown in Fig. 13a is 
greater than that shown in Fig. 13c, the response 
profile shows a single peak in the first case and twin 
peaks in the second case. 

A more effective way of representing the results of 
this model experiment is shown in Fig. 14 in which the 
disparity between peaks of excitatory neuronal activity 
is plotted as a function of the disparity between peak 
amplitudeS of the two stimuli. The disparity is taken 
to be zero when the response consists of a single peak 
of activity. Starting at zero stimulus disparity, the 
arrows in Fig. 14 indicate that as the stimuli are moved 
apart, the response remains unimodal until the 
disparity increases beyond approximately 180gm. 
Thereafter the bimodal response is rapidly established. 
As the stimuli are again brought back into register, the 
arrows indicate that the response peaks do not move 
together as quickly as do the stimulus peaks (because 
of the retarding effects of recurrent lateral inhibition). 
Furthermore refusion does not occur at 180 gm and 
the bimodat response is maintained until a disparity 
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Fig. 14. Simulation of the Fender-Julesz experiment on hysteresis 
in binocular vision. Stimulus disparity is the distance between 
maxima of the two displaced Gaussian stimuli, while <AEm,x> is 
the separation between maxima in the neural response. Arrows 
show the hysteresis loop generated by first pulling the stimuli apart 

and then bringing them back into register 

of about 80 gm is reached, after which refusion is 
rapidly established. The letters a - c in Fig. 14 indicate 
the points on the hysteresis loop from which the 
response profiles shown in Fig. 13 were taken. 

The circuit indicated by the arrows in Fig. 14 is 
clearly hysteretic, and is generated by spatio-temporal 
interactions within the model tissue. If unimodal 
responses are identified with binocular single vision 
and bimodal responses with double vision, then the 
hysteresis loop shown in Fig. 14 reproduces the results 
of the Fender-Julesz experiment. The reader is referred 
to Fig. 3 of the original article for comparison (Fender 
and Julesz, 1967). 

3.3.2. Random Dot Stereograms. Two other aspects 
of the Fender-Julesz experiments are also of interest. 
In addition to bar targets, experiments were also 
performed using highly textured two-dimensional 
patterns [random dot stereograms (Julesz, 1971)]. 
Spatial hysteresis was again observed, but much 
greater disparities were found to be necessary for 
breakaway and much smaller ones for refusion. In 
effect, the range of stimulus disparities over which 
spatial hysteresis was operative increased in both 
directions relative to the results obtained using vertical 
bar targets. Since the model problem is now two- 
dimensional, attempts have not yet been made to 
reproduce the results. It seems certain however, that 
the increased effectiveness of highly textured patterns 
in producing spatial hysteretic effects is directly related 
to the fact that highly textured chess board patterns 
generate much stronger cortical evoked potentials 
than do simpler line targets (Spehlmann, 1965). It has 
been found that a "chessboard" stimulus will similarly 
produce a stronger response than a bar in the two- 
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dimensional tissue model, so that it is very likely that 
highly textured target will also generate stronger 
hysteretic effects in the two-dimensional model. 

3.3.3. Occlusion Effects. The other interesting aspect 
of the Fender-Julesz experiments is contained in the 
determination of the duration of occlusion of the two 
retinal images that is necessary to cause the breakaway 
of a fused image at various disparities. As one might 
expect, the critical duration of occlusion was found 
to be a monotone-decreasing function of increasing 
retinal stimulus disparity. It has already been shown 
that strength-duration curves of Block type obtain for 
threshold phenomena in the neuronal tissue model 
(w 2.2.1). This fact, together with the observation that 
the strength of the stimulus actually delivered to the 
tissue model at the site of single (fused) response peak, 
decreases with increasing stimulus disparity, indicates 
that a qualitatively similar occlusion effect can be 
expected from the model. 

3.3.4. Relation to Two Theories of Binocular 14sion. 
Spatial hysteresis is a key feature of the model for 
stereopsis and depth perception recently developed by 
Julesz (1971). The Julesz model employs two interact- 
ing arrays of spring-coupled magnetic dipoles, and is 
based upon an analogy to magnetic hysteresis, since 
no neuronal mechanisms for spatial hysteresis were 
known at the time it was formulated (see w 5.2.15). The 
close qualitative similarity between the Julesz model, 
and the neuronal tissue model described in this paper, 
becomes apparent when it is realised that the locking 
of magnetic dipoles effectively provides local excitatory 
feedback, whereas the springs that couple adjacent 
dipoles provide the equivalent of longer ranged 
recurrent lateral inhibition. 

Sperling (1970) has also developed a rather detailed 
though qualitative physical and neuronal model of 
binocular vision. This model is similar to that one 
described here, in that short range recurrent excitation 
is coupled to longer ranged recurrent lateral inhibition. 
However, the implications of these assumptions for 
large-scale spatio-temporal phenomena are not devel- 
oped in a quantitative fashion. Sperling's postulated 
neuronal binocular field could readily be constructed 
from several interconnected model tissue sheets, and 
it seems clear that the spatial hysteresis effects pre- 
viously discussed would provide a quantitative founda- 
tion for the predictions of Sperling's model. The 
Sperling model is actually more closely related to the 
difference-field model, also developed by Julesz (1971), 
than it is to the spring-coupled magnetic dipole model 
described above. Furthermore, the two models do 
differ in their representation of depth information, and 
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in the dynamics of the process of fusion. The single 
sheet neuronal tissue model presented in this paper 
is not by itself a complete model for depth perception 
and stereopsis. However it does provide a plausible 
neuronal interpretation of visual hysteretic phe- 
nomena. It is expected that further extensions of the 
tissue model will provide more insights into the 
differing neuronal mechanisms underlying the Julesz 
and Sperling models. 

3.4. Conctudin9 Remarks 

In concluding this section it is re-emphasised that 
the spatial modulation transfer function, metacontrast 
and hysteretic effects were all obtained using the same 
choice of parameters in Eqs. (1.3.1) and (1.3.2), i.e., 
those for the active transient mode. The different 
results represent the responses of one model to differing 
stimuli. This is consistent with the hypothesis advanced 
in w 2.2.3 that the active transient mode may represent 
qualitatively the responses of sensory cortical tissue. 
The known anatomy of striate cortex is certainly much 
more complicated than is reflected in Eqs. (1.3.1) and 
(1.3.2), but it is hoped that the relative simplicity of the 
model may serve as a basis for a better understanding 
of the functional significance of cortical complexity. 

4. Discussion 

Throughout this paper it has been assumed that 
the appropriate description of the dynamics of nervous 
tissue is in terms of the interactions between aggregates 
of neurons distinguish according to cellular type. 
Given this assumption it is natural to chose as dynam- 
ical variables the proportions of neurons in the various 
aggregates becoming activated per unit time in a 
small region of the tissue. With this choice of variables, 
and a few simplifications such as time coarse-graining 
and the neglect of relative refractoriness, the model 
embodied in Eqs. (1.3.1) and (1.3.2) is readily derived. 

The anatomy represented in the model is a 
reasonable approximation to actual neuronal tissue, 
for the basic circuitry has been proposed for many 
neuronal regions. For example, the model anatomy 
is similar to that of the olfactory bulb and pre-pyriform 
cortex (Allison, 1953). The primitive nature of these 
structures re-inforces the idea that the present model 
may serve as a first simple approximation to the more 
complex structures of cerebral neo-cortrx and related 
thalamic nuclei. However even this simple model 
exhibits considerable complexity. Three fundamentally 
distinct dynamical response modes have been found, 
each associated with a different set of connectivity 

parameters. Since these parameters are anatomical 
in nature, it has been postulated that each mode 
represents a different anatomical specialisation of 
neuronal tissue to perform a distinct physiological 
function. 

Of the three anatomies perhaps the most interesting 
one is that supporting active transient responses. It 
has been shown that there is a threshold for the genera- 
tion of active transients, involving both spatial and 
temporal summation. Further properties include 
variable latencies, edge enhancement of sufficiently 
wide stimuli, and a relationship between the width of 
the neuronal representation of a stimulus and the 
stimulus intensity. Since these properties are all 
characteristic of primary sensory systems, it is pos- 
tulated that the active transient anatomy is charac- 
teristic of primary sensory cortex, particularly of 
primary visual cortex. This postulate is supported by 
the fact that such a model anatomy reproduces, with 
one fixed set of parameters, a variety of sensory 
experiments: spatial modulation transfer determina- 
tions, metacontrast effects, and the spatial hysteresis 
effect discovered by Fender and Julesz (1967). 

The second model anatomy supports the genera- 
tion of long-lasting oscillatory responses, and is 
assumed to be characteristic of thalamic tissue. The 
characteristic responses are spatially localised limit 
cycles for constant spatially inhomogeneous stimuli. 
The frequency of such oscillations codes for stimulus 
intensity, and again, edge enhancement occurs for 
sufficiently wide stimuli. Frequency de-multiplication 
of stimulus pulse trains also occurs, and with suitable 
diffuse dis-inhibition, propagating waves are generated. 
It is suggested that such dis-inhibition is one of the 
factors contributing to the generation of the various 
rhythms observed in the EEG. 

The third model anatomy supports the generation 
of spatially inhomogeneous stable steady states of 
neuronal activity. Excitation to such states by brief 
stimuli involves threshold effects and spatial and 
temporal summation. Such spatially inhomogeneous 
states retain information about the contours of stimuli. 
It is therefore postulated that these states may be 
involved in short-term memory and that the associated 
anatomy, involving strong recurrent excitatory inter- 
connexions, is characteristic of archi- and pre-frontal 
cortex. 

The various properties described above all arise 
from the interplay between short range recurrent 
lateral excitation and longer ranged recurrent lateral 
inhibition. The current model may therefore be 
thought of as a natural extension of several previous 
studies of spatial interactions in nervous tissue. 
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Perhaps the first important study was that of Beurle 
(1956) who analysed the properties of a medium 
composed exclusively of excitatory neurons. Inhibitory 
neurons were not included and the refractory periods 
of the excitatory neurons were assumed to be so long 
that each could fire only once in response to a given 
stimulus, although this assumption was later removed 
in computer simulation studies by Beurle (1962) and 
Farley and Clark (1961). The present model may be 
thought of as an extension of Beurle's to include the 
multiple firing of neurons and recurrent lateral 
inhibition as well as excitation. The most elegant and 
best known studies of a system involving lateral 
inhibition are those of Hartline and Ratliff on the 
compound eye of Limulus (Hartline and Ratliff, 1958; 
Ratliff, 1965). The present model may also be thought 
of as an extension of the Hartline-Ratliff paradigm to 
incorporate recurrent lateral excitation. An attempt 
by Griffith (1963, 1965) to develope a neuronal "field 
theory" may also be cited here, although it was 
unsuccessful, mainly because of a failure to deal with 
inhibition as arising from a distinct aggregate of 
inhibitory neurons. The appropriate two variable 
description of excitatory-inhibitory interactions in a 
net was first developed by Cowan (1968, 1970) and has 
been used in this paper. Finally, the present model is an 
extension to the spatial domain of the non-linear 
dynamics of localised neuronal aggregates previously 
developed by the authors (Wilson and Cowan, 1972). 

It is to be emphasised that all spatial interactions 
in the model are recurrent. This feature distinguishes 
the model from retinal models such as Sperling's 
(1970). It is in fact the incorporation of recurrent 
excitatory interactions that leads to the active prop- 
erties of the model tissue: thresholds for self-generated 
excitation, inhomogeneous stable steady states, limit 
cycle oscillations, spatial hysteresis, and so on. Such 
active properties seem to be present in cortical and 
thalamic responses as manifested in such phenomena 
as short term memory, selective attention, dreaming, 
and ultimately in cognition. Obviously these active 
properties must be characteristic of central rather than 
retinal or other peripheral processes. [Recurrent 
interactions are present in the retina, but are almost 
certainly inhibitory, and involved in adaptation 
(Rushton, 1965).] 

The model developed here is only a crude first 
approximation to the anatomical and physiological 
complexity of actual nervous tissue. However, now 
that a framework for dealing with spatio-temporal 
interactions between aggregates of distinct neuron 
types has been developed, it will be seen that the model 
may be readily extended to include spatio-temporal 

interactions among three or more aggregates. In 
general, the model for N aggregates will involve N 
simultaneous first order integro-differential equations 
of the same form as Eqs. (1.3.1) and (1.3.2), together 
with N 2 connectivity functions specifying the spatial 
interactions among and within the N aggregates. The 
model can readily incorporate such further com- 
plexities as the differential magnification of central 
and peripheral regions in cortical area 17 (Daniel and 
Whitteridge, 1961) through the use of spatial connec- 
tivity functions with position dependent coefficients. 
In such a fashion the model may be extended to 
incorporate much more of the detailed complexity of 
nervous tissue. To cite but one example, the "simple" 
and "complex" neurons of Hubel and Wiesel (1963, 
1965, 1968) might be modelled as two distinct ag- 
gregates of excitatory neurons. 

In concluding, one important ambiguity in the 
anatomical interpretation of the present model should 
be noted. It has been assumed that all recurrent 
interactions occur between neurons located in the 
grey matter of a single anatomical region of cortex 
or thalamus. However, it is known that many cortical 
and thalamic regions are reciprocally and topo- 
graphically connected. If the conduction time for 
impulse propagation between two such reciprocally 
connected regions is sufficiently short, then some of the 
dynamical properties of the cortical tissue model might 
actually be properties of the two interconnected 
regions rather than of either one in isolation. The 
resolution of such ambiguities must await further 
anatomical and physiological data. 

5. Appendix 

5.0. Introduction 

The fundamental equations discussed in this 
paper, Eqs. (1.2.1) and (1.2.2) and the time-coarse 
grained forms (1.3.1) and (1.3.2) are inherently non- 
linear, and generate complex non-linear phenomena. 
Linear equations cannot generate such phenomena as 
active transients that persist after the cessation of 
stimuli, limit cycle oscillations, or spatially in- 
homogeneous stable steady states. Furthermore, even 
in Eqs. (1.3.1) and (1.3.2) it is not possible to solve for 
the spatial steady states and then determine their 
stability by linear analysis. Fortunately it is possible 
to linearise Eqs. (1.3.1) and (1.3.2) about a spatially 
homogeneous state, (E(x, t ) ) =  (Eo(t)) and (I(x,  t)) 
= (Io(t)) and then study stability properties of the 
resulting equations. The point is that given (E0) and 
( Io)  it is always possible to choose constant values of 
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<P(x, t)> and <Q(x, t)> so as to make (<E0>, <Io)) a 
steady state (not necessarily stable) of Eqs. (1.3.1) and 
(1.3.2). 

5.1. Linearised Stability Analysis 

It is therefore assumed that appropriate values of 
(P(x, t)> and (Q(x, t)> have been chosen in such a 
fashion, so that the linearised forms of Eqs. (1.3.1) and 
(1.3.2) are, respectively 

g , 
/.t--~-(e (x, t)) = -- ke < E'(x, t) ) + Se[ < Et (x , t) > (~ flee(X) 

- (I'(x,t)) | + (P'(x,t))]  (5.1.1) 
and 

0 
12--~ (I'(x, t)) = - ki(I'(x, t)) + Si [(e'(x,t)> | flei(X) 

-- < I'(x,t) > | [3ii(X ) -4- ( Q'(x,t) > ] (5.1.2) 

where 
( E' (x, t) ) = ( E(x, t) ) - (Co(t)) 

and similarly for ( I ' ) ,  <P'), and (Q') ,  and where 

ke= 1 +re~gPe[<Eo>, (1o>] ; 

g~e(Y) <E'>=0 S e= [1-- re<Eo>]" a ~  ' 

< r > = o  

k ,=  1 +ri6~i[<Eo>, <Io>3 ; 

~ ~9~(Y) 
Si=[1--ri<I~ " ~Y <e'>=o " 

<r>=o 

In principle Eqs. (5.1.1) and (5.1.2) may be solved 
exactly by Fourier transforming with respect to x. 
Unfortunately, the inverse transform involves extrac- 
tion of quartic roots, so that the method is not prac- 
ticable. However all the important properties may be 
obtained by considering only perturbations that are 
spatially periodic. It will therefore be assumed that 
(e'(x,  t)> and <Q'(x, t)> have Fourier series representa- 
tions, so that only solutions need be considered for 
individual harmonics of (P'> and (Q'>. 

The response of the linearised tissue equations to 
f 2nnx] 

the perturbation cos [ ~ ]  will be of the form 

, [2nnx]2nnx 
<e'(X, t)> = <e (t)> COSl---y--r [ 

(5.1.3) 
[2nnx]  

<I'(x, t)> = (I'(t)> cos [ ~ - - - ] .  

On substituting these expressions into Eqs. (5.1.1) and 
(5.1.2) one obtains: 

2SebeetYee _] 
lt-ff-f (E'(t)) = [--ke + 1 + (2n~Zffee/t) 2 ]" <E'(t)) 

[ 2Sebieaie ] 
- -1 +(2nnaie/L) 2 " (I'(t)) + Se (5.1.4) 

and 

d [ 2Sibeiaei ].(E,(t))  
b t ~  (I'(t)) = 1 + (2n~Zaei/L) 2 

2SibiitTii .] 
- [ k i +  l+(2nr~a, /L)2j . ( I ' ( t ) ) .  (5.1.5) 

These equations are of the form 

d , 
/ a ~ - ( e  ) = c 1 <E') - c2<I' ) + Se, 

d 
I~-df (I'> = c a (E'> - c4(I ' ) .  

The eigenvalues are therefore proportional to 

e, - c4 _+ ]//[(c, +c4)2-4c2c3]/2.  (5.1.6) 

Thus a necessary condition for stability is that c4 > c~. 
It follows from Eqs. (5.1.4) and (5.1.5) that this condi- 
tion is 

2Sibiiaii 2Sebeeaee 
1 +(2nnai.a/L) 2 ~-ki> l+(2nnaee/L) 2 - ke"  (5.1.7) 

If the homogeneous steady state ((E~>, (I~>) is near 
the resting state (0, 0), then ke and k i will both be 
approximately unity. If tree > aii, the conditions (5.1.7) 
will be satisfied for all n as long as Sib i ia.> Sebeeaee- 1. 
When this condition is met, a sufficient condition for 
the stability of the solutions of Eqs. (5.1.4) and (5.1.5) is 
that the square root in (5.1.6) be imaginary. For this 
to be the case it is necessary and sufficient that 

16SeSibie~iebeiaei 
(l+(2n~,~ie/L) ~)(l+(2n~oojL) ~) 

[_ 2Sebeeaee 2S, b , a ,  ]2 
> l+(2nnaee/L) 2 4- l+(2nnau/L)2 t -kl-ke .(5.1.8) 

Suppose that (5.1.8) is satisfied for small n, if k e is even 
slightly different from k~ however, the inequality will be 
violated for sufficiently large n. Thus for sufficiently 
large values of n the eigenvalues of Eqs. (5.1.4) and 
(5.1.5) must be real. In such a case the requirement for 
stability becomes 

C 1 - -  C 4 -4- ]//[-(C 1 -~- C4) 2 - -  4C 2 C3] < 0 
o r  

C 2 C 3 < C 1 C 4 �9 
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In terms of the coefficients in (5.1.4) and (5.1.5) this 
condition becomes: 

4SeS ib ie tT iebe l tTe i  

(1 + (2n~Za~e/L) 2) (1 + (2n~ZaejL) 2) 

[ 
> [ 1 +(2n~a~JL)  2 1 + (2n~ tT i i /L )  2 

Since k e and k~ are both positive, it follows that (5.1.9) 
is automatically satisfied for very large n. Suppose 
that the coefficients have been chosen so that (5.1.9) 
is also satisfied for small n. For the remaining inter- 
mediate values of n however, the situation may be 
different. It has already been argued on physiological 
grounds that aei>tTee [Eq. (1.4.3)]. If in addition 
a~ > a n, then the left hand side of (5.1.9) will decrease 
faster than the right hand side as n increases. It is thus 
possible that (5.1.9) will be violated for intermediate 
values of n, thus leading to instability. 

These considerations lead to the conclusion that 
Eqs. (5.1.1) and (5.1.2) may be stable with respect to 
harmonic perturbations of both low and high spatial 
frequency, yet unstable to perturbations of inter- 
mediate spatial frequency. Even if the equations are 
not actually unstable with respect to such intermediate 
frequencies, they will be less stable than at high fre- 
quencies, and consequently more sensitive. This 
property is manifest in the spatial modulation transfer 
function of the non-linear Eqs. (1.3.1) and (1.3.2). It is 
also the basis for the edge enhancement effects in the 
active transient mode, and for the edge extraction 
effects in the steady state mode. 

Unfortunately, linearised analysis tells one little 
about the oscillatory mode since limit cycle oscillations 
are functions of the 91obal properties of the non-linear 
equations. Nor does the linearised analysis indicate 
whether an instability at intermediate frequencies will 
lead to an active transient response, or to a spatially 
inhomogeneous steady state. 

5.2. Notes and Comments 

1.,,80.1 p. 56. Such redundancy is not necessarily a simple in- 
crease of the number  of neurons involved in any given operation 
(v. N e u m a n n  op cit), but rather an increased complexity of the overall 
operations served by neurons inter-connected into radially organised 
nets (Winograd and Cowan op cit). In such functionally redundant  
nets each neuron is involved in numerous  local operations, and 
each local operation is effected by many different groups of neurons. 

2. w 0.1 p. 56. The laminar structure of cortex and thalamus does 
not vitiate the argument  for radial redundancy. Such structure may 
be no more than the most  economical way to specify and realise 
inter-connexions within and among functional columns. 

3. w 1.0 p. 58. The neglect of any relative refractory period during 
which neurons have higher than normal  thresholds leads to a great 

simplification of the theory. Equations incorporating relative 
refractory neurons have been developed in a previous paper (Wilson 
and Cowan, 1972). All the results obtained in the current paper can 
be obtained by specialisation from these equations. 

4. j 1.0 p. 58. It was first pointed out to the authors  by W.J.  
Freeman Jr., that if excitatory neurons are taken to be mitral cells, 
and inhibitory neurons to be granule cells, the theory can be seen to 
incorporate the basic cytoarchitectonic features of the olfactory 
bulb. Similarly, pre-pyriform cortex may be taken to consist of 
excitatory pyramidal neurons and inhibitory neurons. The fact that 
the pre-pyriform or olfactory cortex is phylogenetically one of the 
most  primitive parts of the brain is further support for the investiga- 
tion of a model such as is presented here as a prelude to the devel- 
opment  of more complex models that might more fully incorporate 
the detailed architecture of cerebral cortex. 

5. w 1.2 p. 59. This expression is an extension of that introduced 
by Beurle (1956) and is based on the assumed additivity of post- 
synaptic effects. Sperling (1970) introduced divisive or shunting inhi- 
bition to model retinal interactions. As Sperling indicated, shunting 
inhibition is a convenient means  for the introduction of back-ground 
adaptation. Divisive inhibition could easily be introduced into the 
present model, but has been excluded, partly to preserve the mathe- 
matical simplicity of the model and also because there is as yet very 
little experimental evidence for the existence of such inhibition in 
cerebral cortex. 

6. w 1.2 p. 60. The effects of mult imodal densities G(O) on ~e(N,) 
have been discussed in a previous paper (Wilson and Cowan, 1972). 

7. w !.2 p. 60. In actual fact the analysis given above represents a 
simplification of the actual details of the interactions that lead to the 
activation of neurons in the sheet. A more detailed analysis can be 
sketched out as follows [see Cowan (1972) for more details]. At any 
instant t, the proportion per unit time of neurons at x reaching a 
fixed threshold with a mean excitation ~/~ comprises a proportion 
per unit time reaching the threshold for the first time in the interval 
(0, t), plus a proportion per unit time reaching the threshold for the 
second time, plus a proportion per unit time reaching the threshold 
for the third time . . . . .  and so on. Let h(.N~, ,9~) be the proportion 
per unit time described above. It has been shown for a wide variety 
of neuronal models (Johannesma, 1967; Roy and Smith, 1969) that h 
is a sigmoidal function of ~ for a fixed threshold ,9> However, by 
assumpt ion the threshold is itself a randomly varying parameter 
with the distribution function G(Se). It follows that the distribution 
function for the proportion per unit time of neurons reaching 
threshold at t is 

h(N'e, 'q'e) G(Oe) doe. 
o 

This expression is certainly monotone increasing with KI e. Indeed 
it will be sigmoidal if G(~e) is unimodal. The simplification in the 
text amounts  to the assumption that h equals the Heaviside step 
function $. IN e - ,gel. This implies the neglect of neuronal activations 
caused by fluctuations about the mean level Ne, hence the description 
of 5~e as the expected proportion of neurons reaching threshold per 
unit time. Similar considerations would obtain if thresholds were 
to be fixed at a single value, and fluctuations of connectivity, or in the 
activity itself, were to be considered. 

8.w p. 60. This correlation is on a neuron by neuron basis. 
That  is, neurons that are strongly excited at t are likely to have just 
been strongly excited, and are therefore likely to have just been 
activated and therefore used at t. Thus the expected number  of 
neurons activated during the interval 6t will tend to be smaller than 
R e . 5Pe(N,) &. As a consequence there will be fluctuations about the 
mean activity E(x,t)8t .  However the correlation-time of such 
fluctuations cannot be greater than the membrane t ime-constant #, 
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since membrane potential decays with such a time course. Indeed 
the actual correlation-time will be considerably shorter than mainly 
because of the smoothing effect of the spatial summation of afferent 
excitation by individual neurons, the occurrence of multiple firings 
of neurons, and also because of intrinsic fluctuations of neuronal 
thresholds and similar noisy events. Thus over an aggregate or 
tissue, correlations between sensitive neurons and excited neurons 
may be expected to be small and of short duration. Moreover in 
w 1.3, the time coarse-grained expressions (E)  and ( I )  are introduced 
and used throughout the subsequent analysis. (E)  and ( I )  are 
obtained from E and I respectively by filtering with a smoothing 
time-constant equal to ~. Such a filter automatically eliminates all 
high frequency oscillations greater than #-  ~ c.p.s., and consequently, 
the correlations referred to above. 

9. w 1.3 p. 60. Recent evidence suggests that ShoWs estimated may 
be too small (Scheibel and Scheibel, 1970). However it is often the 
case that longer axon processes are thicker and have higher conduc- 
tion velocities. Therefore the argument for neglecting conduction 
terms for lateral interactions remains valid. However the situation 
may be very different when projections from one anatomical region 
to another are considered. 

10. w 1.4 p. 62. In a few instances the effects of a non-monotone 
form for fle~(x) have been investigated. The function chosen possessed 
a local minimum at the origin and symmetric maxima located a 
specified distance to either side. The attempt was to model Cajal's 
cellule fi double bouqet dendritique, which has been supposed to be 
inhibitory (Szentagothai, 1967). Such a choice did not appear to 
yield any qualitatively new results, ~however. 

11.57 1.4 p. 62. These inequalities do not strictly preclude the 
possibility of some inteimediate spatially uniform state being stable. 
However, such a state has never been found. 

12. w 1.4 p. 63. The point is that different choices of these param- 
eter values can be compensated for by suitable alterations of the 
values of the other parameters. For example, an increase in the 
values of r e and r~ can be compensated by increasing the values of 
the coupling coefficients b j j,. 

13. w 2.2 p. 63. Because of the complexity of Eqs. (1.3.l) and (l.3.2) 
and the number of parameters involved, one cannot be certain that 
these modes exhaust the possibilities. Furthermore, it has proved 
to be impossible to determine the dependence of different modes on 
parameter values. However, it is shown that certain relationships do 
exist between the various parameters that serve to partly specify the 
modes (see w 5.1). 

14.w 65. L. M. Glass (personal communication) has 
observed that the Mach band phenomenon (another edge en- 
hancement effect), also has a definite latency associated with its 
development. 

15. w 3.3.4 p. 74. Hysteresis in model neuronal nets had already 
been demonstrated (Harth et al., 1970). However the phenomena 
described were purely temporal, and were not analogous to the 
spatio-temporal hysteresis discovered by Fender and Julesz. 
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