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In this paper, stability of two-prey, one-predator communities is investigated by Lya- 
punov's direct method and Hopf's bifurcation theory. Three patterns of three-species 
coexistence are possible. A globally stable non-negative equilibrium exists for the system 
even if two competing prey species without a predator cannot coexist. The stable equi- 
librium bifurcates to a periodic motion with a small amplitude when the predation rate 
increases. It is also shown that a chaotic motion emerges from the periodic motion when 
one of two prey has greater competitive abilities than the other. This predator-mediated 
coexistence can be realized by the intimate relationship between preferences of a preda- 
tor and competitive abilities of two prey. 

1. Introduction. The relationship between complexity and stability in 
ecosystems is a topic of continuing interest to ecologists. In 1966 Paine 
discovered that predation plays an important role in species diversity (Paine, 
1966). When predators were experimentally removed the system became 
less diverse, that is, certain benthic invertebrates and algae were led to local 
extinction in the marine rocky intertidal community. On the other hand, 
there are studies that failed to demonstrate predator-mediated coexistence 
or that showed an actual decrease in the number of coexisting species under 
the impact of predation. For details see Caswell (1978). Recent discussion 
on the effect of herbivores on plant diversity is found in Lubchenco (1978). 
She showed that the key to understanding the role of the predation might 
reside in the consumer prey preferences and competitive abilities of food 
species. When the competitively dominant species is preferred by the con- 
sumer there is a unimodal relationship between prey density and consumer 
density, with the highest diversity at intermediate consumer density. When 
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the competitively inferior species is preferred there is an inverse relationship 
between prey density and consumer density. 

Parrish and Saila (1970) constructed a mathematical model for a two-prey, 
one-predator system, stimulated by Paine's observations. They showed by 
computer simulation that the inclusion of a predator can delay the extinc- 
tion of one prey species, but they could not find a set of parametric values 
with which three species can coexist. Cramer and May (1972) considered 
the stability of the same model by perturbation methods. They gave neces- 
sary conditions for the three-species stable coexistence. The results of 
Cramer and May were refined by Fujii (1977). The last two papers explained 
mathematically the results of Paine's experiments, that is, three species 
converge to their coexistent state if displacements from the three-species 
equilibrium are sufficiently small. Fujii (1977) also suggested the existence 
of a stable limit cycle in three-species state space, but his proof is insuf- 
ficient. Vance (1978) showed that the three-species coexistence is possible, 
by local stability analysis, if the predator prefers the superior competitor. 
Further, Vance discovered a 'quasi-cyclic' motion, which is called a spiral 
chaos by Gilpin (1979), by computer simulations. Recently, Hsu (1981) 
gave the conditions for the 
extinction of either prey, but 
can survive on either prey in 

coexistence of two competing prey and the 
he analyzed only the case where the predator 
the predator-prey subcommunities. Hsu also 

gave a numerical example of a limit cycle. None of them gave satisfactory 
results for the predator-mediated coexistence in the model initiated by 
Parrish and Saila. For a rather general family of two-dimensional com- 
petitive systems, Yodzis (1976) showed that harvesting (or predation) 
could alleviate competitive instabilities. He also suggested that in more 
complicated ecosystems with many competing species, there would be a 
good chance that harvesting at moderate rates would increase species di- 
versity if one species was dominated in the unharvesting system. In this 
paper we intend to give the mathematical possibility of predator-mediated 
coexistence in consideration of the relationship between preferences of a 
predator and competing abilities of two prey. 

The model discussed in this paper is described by the following system 
of differential equations: 

Ixl(t)l IXx(t)(ba--xa(t)--~x2(t)-ez(t))~ 

dt [_z(t)] [_z(t)(--b3+dex~(t)+dtax2(t)) _] 

Here x1(t) and x2(t) (or z(t)) are population sizes of prey (or predator) 
species, bi > 0 (i = 1, 2, 3) are intrinsic rates of increase or decrease, o~ > 0 
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and/3 > 0 are parameters representing competitive effects between two prey, 
e > 0 and/a > 0 are coefficients of  decrease of  prey species due to predation 
and d > 0 is equal transformation rate of  predator. In (1) b l (i = 1, 2, 3) 
and d are fixed constants and a, /3, e and/a are parameters. In general the 
two-prey, one-predator system will have eleven coefficients. Four  of  them, 
however, can be eliminated by scalings of  time and three variables xl,  x2 
and z (Hsu, 1981). System (1) is mathematically general, except for the 
equal transformation rate d. The relationship between stability of system 
(1) and competitive subsystem of two prey, 

ix ,t l  1 
~ Lx2(t)_] Lx2(t) (b2--[Jx,(t)--x2(t))_] ' 

(2) 

is also investigated. 
In Section 2 known stability conditions for a generalized Volterra system 

are summarized and also a new result is presented. The two-prey, one- 
predator system (1) is discussed in Section 3. The results are compared 
with biological experiments in Section 4. All the theorems of  this paper 
are proved in the appendix. 

2. Definitions and Stability Conditions. In this section we consider a 
generalized form of model (1), that is, a model called a generalized Volterra 
system: 

dt j=l 
(3) 

and some known stability results with respect to the system are surveyed. 
Let R n be an n-dimensional Euclidean space and I be a subset of  N = 

{ 1, . . . , n} such that x* = 0 for i E I, where x* = (x~" . . . .  , x*) r is a 
non-negative equilibrium of  (3). Further, let J = N -- I. Then, correspond- 
ingly to x*, R~ is defined as follows: R}' = (x[xi >~ 0 for i E I and x i > 0 
for /6  J}. 

Since every solution that starts from an initial point in Rp stays in RJ' 
at all future times, stability of  a non-negative equilibrium of (3) is defined 
as follows. 

Definition 1. A non-negative equilibrium x* of  (3) is called globally stable 
if and only if (1) x* is locally stable, that is, if for any e > 0 there exists 
a 6(e) such that Ix ~ -- x*l < 6(e) and x(t) E R~, then Ix(t) -- x*l < e for 
t >~ 0, and (ii) every solution converges to x* as t ~ +0% if x ~ ~ R~. Here 
x ~ is an initial state and x(t) is the solution of  (3) starting from x ~ 
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Definition 2. For an n • n real matrix A (i) A E Sw (or A E Sw ) implies 
that there exists an n • n positive definite diagonal matrix W such that 
WA + ATW is positive definite (or positive semi-definite), (ii)A E P  implies 
that all the principal minors of  A are positive (P-matrix), and (iii) if all the 
real parts of  eigenvalues of A are negative, then A is called stable. 

The following stability conditions are known and to be used in the follow- 
ing discussions. 

THEOREM 1 (Takeuchi and Adachi, 1980). I r A  = (aq) E Sw, then (3) 
has a non-negative and globally stable equilibrium for each b = (b i) E R n . 

THEOREM 2 (Takeuchi and Adachi, 1982). Ira  non-negative equilibrium 
x* of (3 )  is locally stable, then 

b i - - ~  aqxf l<0 ,  i =  1 , . . . , n .  (4) 
j---I 

THEOREM 3 (Gob, 1978). Suppose that there exists a non-negative equi- 
librium x* o f  (3). Then x* is globally stable i f  

(i) A E Sw, (5) 

n 

(ii) bi -- ~ c~jx~" <<, 0 for any i E I, and (6) 
j= l  

(iii) the function 

--(x --x*)r(WA + ArW) (x - -x*)  + 2 ie,~ wtxt ( b t -  ~j= 1 aqx/*) (7) 

does not vanish identically along any solution of (3 )  except for x = x* in RT. 

By Theorem 1 A E Sw ensures the existence of  a non-negative globally 
stable equilibrium of (3) for each b E R n. The following example shows 
that there exists a non-negative and globally stable equilibrium for some 
b E R",even if A N Sw orA q~Sw. 

Example. Let us consider system (3) when n = 2 and 

A = (a~j)  = (8) 
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This matrix does not belong to matrix class Sw or Sw for a > 3 since A ~ P 
for a > 3 (Takeuchi et al., 1978). Therefore Theorems 1 and 3 cannot be 
applied to this case. When b = (1, 2) T, x* = ( l ,  0) r is an equilibrium of (3). 
Define for w i > 0 (i = 1, 2) 

V = W l ( X  1 - -  I - - l n x  1) + W2X2; (9) 

then V >~ 0 and the equality holds only fo rx  = x* in R 2 = {xl > 0, x2/> 0}. 
Suppose that a > 3; then the time derivative of (9) along the solution of (3) 
with (8) becomes 

d 
- -  V I = - - ( X  1 - -  l , x 2 )  
dt (3) 

Since 

then 

[w, 1 [, ,/31 
w2 2 1 J x 2 

(a - -  2 ) W 2 X I X  2.  

(1o) 

1 1/3] ESw, 

2 1 
( l l )  

dV/dt I ~<o (12) 
(3) 

in R] and the equality of  (12) holds only for x = x*. Therefore x* is globally 
stable by gyapunov's extended stability theory (LaSalle, 1960). 

For fixed b = (1, 2) r ,  x* = (1, 0) r is a globally stable equilibrium of (3), 
with matrix A defined by (8) for 2 < a ~< 3 using Theorem 3. The above 
example shows that x* = (1, 0) r is also globally stable for a > 3. The 
following lemma is useful in such cases and is used in Section 3. 

LEMMA 1. Suppose that matrix A = (o4]) o f ( 3 )  belongs to class Sw and that 
a non-negative equilibrium (x*, O) = (x~ . . . . .  x~, 0 . . . . .  O) r is locally 
stable. Then (x*, O) is also a globally stable equilibrium o f  the following 
system: 

dt /=~ 

where A = (aij) is any matrix satisfying 

] = [ A p p  Apq] 

L.4qp Aqq ' 
(14) 
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Aqp >~ Aqp . (15) 

Lemma 1 is reasonable from a biological point  of  view since the n-species 
system (13) would have a stable state (x*,  0) when the p-species subsystem 
depresses q species in (13) more strongly than in (3). It should be noted 
t h a t A  E S w  (o rA ESw)  does not i m p l y A  E S w  (o rA E S  w) in general. 

3. Two-prey,  One-predator Models.  This section deals with the two-prey, 
one-predator  system (1). Firstly, the boundedness  of  the solutions of  (1) 
is established. 

THEOREM 4. Al l  the solut ions  o f ( l )  starting in R~o = {xt ~> 0 (i = 1, 2), 
z ~> 0} are bounded.  

The proof  of  Theorem 4 is similar to that  of  Krikorian (1979),  but his 
model  has no competi t ive interactions between prey species. From the 
p roof  Theorem 4 can be easily extended to the n-prey, one-predator system 
(n >t 3) in which n prey have negative density effects. 

There exist seven equilibriums for system (1), namely 
= (xl ,  x2,  z*), where (i) three-species equilibriums: (E3) * * 

x * = ~ i / I A l ( i =  1,2),  z * = ~ / I A I ,  (16) 

Yq = b3e --  db2e~ --  od~3ls + dbllz 2, (17) 

xz = db2 e2 -- db le#  - -  b3fle + b3/a, (18) 

= b3(a{3 --  1 ) + d#(b2 --  {3bl ) + de(bl -- ab2), (19) 

IA[ = d(e 2 + ta 2 -- (a +/3)ev), (20) 

(ii) two-species equilibriums: 

(E+o+) = (b3e, O, db le  --  b3)/de 2, 

(Eo++) = (0, b31a, db21.t --  b3)/dla 2, 

(E++o) = (bl -- ~b2, b2 --/3bx, 0)/( 1 -- oq3), 

(iii) one-species equilibriums: 

(E+oo) = (bl, 0, 0), 

(Eo+o) = (0, b2, 0), 

and the last one is (0, 0, 0), which is unstable. 
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Conditions for non-negativity and for local stability of  equilibriums 
obtained by perturbation theory are summarized in Table I. 

When no predator exists, the stability of  the two-prey competitive system 
(2) can be concluded from Lemma 1 and Theorem 1. 

b2/b I 

(~) (o) 

(A) (C) 

bl/b 2 a 

Figure 1. This figure shows the stability properties of the two-prey system 
(2) as a function of competitive parameters a and/~. In the region (A) positive 
equilibrium is globally stable; in the region (B) [or (C)] the single-species 
equilibrium (bl, 0) [or (0, b2)] is globally stable; in the region (D) (bl, 0) 
and (0, b2) are locally stable and the trajectory converges to each one of them 

dependently on its initial state. See Theorem 5. 

THEOREM 5 (Figure 1). A positive equilibrium (b I -- ab:, b 2 --/3bl)/(l -- o~) 
o f  (2) is globally stable i f  and only i f  a ~ bl/b 2 and [J ~ b2/b 1 . The (bl, O) 
[or (0, b2)] is globally stable i f  and only i f  a <~ bl/b2 and [3 >~ b2/b 1 (or 
a >~ bl/b 2 and fl <<. b2/bl) and at least one o f  the inequalities in each pair o f  
inequalities is strict. When a > bl/b 2 and fl > b2/bl, (bl, O) and (0, b2) are 
locally stable. 

The following lemma is useful for stability analysis of  system (1). 

LEMMA 2. Let  A be a matrix defined by 

A = 1 u , ( 2 1 )  

e --d/~ 0 

then A belongs to class Sw i f  and only i ra  + fj <~ 2. 
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Using Theorem 3 and Lemma 2, global stability of equilibriums of (1) 
can be established. 

THEOREM 6. Suppose that ~ +/3 < 2. 

(i) I f  (E 3) is non-negative, then (E3) is globally stable. 
(ii) I f  (E3) is not non-negative, then one o f  (Eo++ ), (E+o+), (E++o), (E+o0) 

or (E0+o) is globally stable. 

From Theorem 5, two competing species cannot coexist when a >t bl/b 2 
or/3 i> b2/bl. The addition of  a predator feeding on two prey changes the 
patterns of  three-species stable coexistence. Four cases, classified by the 
competitive abilities of two prey, are discussed. 

3.1. Case where c~ < bl/b 2 and [3 < b2/bl. We first consider the case 
in which the two-prey subcommunity is globally stable and stable coexist- 
ence of two prey is realized. 

From Theorem 6 and non-negative conditions of equilibriums, Figure 2(a) 
is obtained for o~ +/3 < 2. Figure 2(a) shows that four equilibriums can be 
globally stable, but three-species stable coexistence is not always possible 
even if o~ <," ba/b 2 and/3 < b2/b 1 . 

(E+o +) '~ _ 

(E 3) 

e 0 

(a) (b) 

Figure 2. These figures show the stability properties of system (1) for the case 
< bl/b2, [J < b2/b I when globally stable coexistence in two-prey subcom- 

munity is possible. (a) For ct +/3 < 2, four equilibriums can be globally stable 
and three-species stable coexistence is not always possible; (b) for a +/3 ~" 2 
but a/3 < 1, each equilibrium is locally stable. In the region (A) the existence 
of non-negative (E3) does not exclude local stability of (E+o+) and (Eo++). 

See Section 3.1 for details. 
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Let us consider the case where ~ +/3 > 2 but oq3 < 1. In region (A) of  
Figure 2(b) (E3) is non-negative but  unstable. Hence non-negativity con- 
ditions of  (E3) do not exclude in general local stability of  two-species equi- 
librium. The global stability region in competitive parameters t~--/3 space 
of  a two-prey system is reduced by addition of  a predator feeding on them. 
Table 1 and Figure 2(b) show, however, that there exists a locally stable 
three-species coexistent state in this case. 

3.2. Case where a > bl/b2 and/3 > b2/b 1. For the case where the com- 
petitive interactions between two prey are greater, two prey of  (2) cannot 
coexist by Theorem 5. Figure 3(a) and Table I conclude existence of  locally 
stable equilibrium, similarly to the case of  ~ +/3 > 2 and o~/3 < 1. 

b3/(db21 

0 b3/(db ~ ) 

(E+oo) 

(Eo+ o) 

E 

f(~'U*)=OX 4. 

C 

(a) (b) 

Figure 3. Figure (a) shows that there exists at least one local stable equi- 
librium for any e and/.t for a > bl/b2 and 13 > b2/b I. In the regions (A), (B) 
and (C) of Figure 3(b) a positive equilibrium exists. In (A) [or (B)] there 
exists at least one Hopf bifurcation parameter e* (or ~*) for any straight 
line # = constant (or e = constant) ff (22) is satisfied. Examples of values 

of e* are given in Table II. See Theorem 7. 

THEOREM 7. (i) In parametric region (A) [or (B)] of  Figure 3(b) there 
exists at least one Hopf  bifurcation parametric value e* (or I~*) for any 
I~ (or e) fixed if  

~ee (a~ -- a 2 )  =h .4= 0 or -~-~(aoal -- ~)u=u,I 4:0 , (22) 
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where 

ao = x* + x*, (23) 

at = (1 --a/3)x*x~ + d(l~2x * + J x ? ) z *  (24) 

az = x~x~z* Ihl. (25) 

(ii) In (C) o f  Figure 3(b) there exists no periodic solution o f  the Hopf  type. 

Appendix gives a stability criterion of the periodic orbits. Table II gives 
parametric values e* of  Hopf bifurcation in region (A) of  Figure 3(b) and 
the values of  H in the appendix. For o~ =/3 = 1.5, bi = 1 (i = 1, 2, 3) and 
d --- 0.5, the periodic solutions are locally stable. These solutions have 
small amplitudes at e > e* and the periods increase with e. For larger values 
of e the population densities of the predator and one prey become nearly 
equal to zero and the periodic solution degenerates into the equilibrium 
(E+oo) or (Eo+o). 

TABLE I! 

Hopf Bifurcation Parametric Value e* and the Values 
of  Function H (A35) in the Appendix for bi = 1 

( i =  1 , 2 , 3 ) , a = 1 3 =  1.5 and d = 0.5 

la e* H( e* ) 

0.138196601 3.74467490 -3176.275734 
0.276393202 3.74363090 -3993.714341 
0.414589803 3.74002568 -5226.346541 
0.552786405 3.73359091 -7247.469273 
0.690983006 3.72404025 -11018.72180 
0.829179607 3.71106829 -19835.06383 
0.967376208 3.69434777 -53973.75096 
1.105572810 3.67352716 -13599823.77 
1.243769410 3.64822684 -54482.82948 

Since H < 0 the bifurcation is supercritical and the periodic orbit is 
stable. For details see Section 3.2 in the text. 

3.3. Case where a ~ b 1/b 2 and 3 >1 b 2/b i (or a >1 b 1/b 2 and/3 <~ b 2/b 1 ). Let 
us consider finally the case in which only one prey can survive if no predator 
exists. For o~ + 3 < 2 the global stability of equilibriums is concluded by 
Theorem 6 (Figure 4a, b). The local stability is also given in Figure 4(c) 
for ~/3 < 1. Now let us consider the case a/3 >~ 1. The parametric space e 
and/~ is partitioned as in Figure 4(d). For any parametric values of e and # 
there exists at least one locally stable equilibrium in the cases considered 
in 3.1 and 3.2. But it can easily be proved that there exist parametric regions 

neslihan
Highlight
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(E+o o) 

(E+o+) ~ 2 ~  

Xl:O 
(E31 

b3/(dbl) E 
(a) 

b31(db 2) 

(E3) 
/ / / ~ 1  =0 

/ (Eo++) 

(Eo+ O) 

(b) 

(E+O0) 

, t  . . . .  ~ '4- 

A 

~,Jl; 
'~]l ~I(E 

~ (E3) 

b3/(db 1 ) 
(c) 

i 
0 

(E+o0) 

b3/(db 1 ) 
(d) 

Figure 4. These figures show the stability of equilibriums with respect to 
e and #. (a) Global stability for the case ot ~< ba/b2, (3 >/b2/bl and c~ +/3 < 2; 
(b) global stability for the ease a />  bl/b2,/3 <~ b2/bl and ot +/3 < 2; (e) local 
stability for o~ <~ b{b2, /3 >t b2/bl, ot +/3 > 2 and c~/3 < 1. The existence of 
(E3) does not exclude in general local stability of (E+o+) and (Eo+ +) in 
region (A); (d) local stability for (~ ~< bl/b2, /3 >1 b2/bl and or/3 > 1. In the 
region (A) there exist sets of parameters 6 and/a with no stable equilibrium. 
Trajectories of (1) with parameters in this region (A) are illustrated in 

Figure 5. See Section 3.3 for details. 

in (A) o f  Figure 4(d) ,  where  no  local ly stable equi l ibr ium exists,  since 

a l  (24)  b e c o m e s  negative as e -+ +o~ in (A). Table  I I I  gives H o p f  b i furca-  
t ion  pa rame t r i c  values e* for  a = 1.0, t3 = 1.5, d = 0.5 and bi = 1 (i = 1, 
2, 3). F o r  e < e* in (A), t ra jec tor ies  converge  to posi t ive equi l ibr ium (E3). 
A per iodic  m o t i o n  o f  the H o p f  type  appears  at e > e*, and its amp l i t ude  
grows as e increases (Figure 5a). The  n u m b e r  o f  peaks  o f  the m o t i o n  
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TABLE III 

Hopf Bifurcation Parametric Value e* and the Values 
of  Function H (A35) in the Appendix for b i  = 1 

( i =  1 , 2 , 3 ) , ~ =  1.0,/3= 1.5 and d = 0.5 

I.t e* H ( e* ) 

0.2 5 .66436887  + 1 1 . 1 9 6 2 7 6 0 2  
0.4 5 . 6 7 2 1 8 1 7 2  + 0 . 7 2 4 5 7 3 3 7 8 5  
0.6 5 .66632819  - -12 .82129035  
0.8 5 . 6 4 3 1 0 3 3 7  - - 3 0 . 2 1 7 8 4 2 7 2  
1.0 5 .59749821  - -52 .40502963  
1.2 5 .52229491  - - 8 0 . 4 9 9 7 4 0 0 8  
1.4 5 . 4 0 6 0 4 6 5 9  - - 1 1 5 . 7 4 9 0 4 8 3  
1.6 5 . 2 2 7 5 8 3 2 0  - -158 .8713165  
1.8 4 . 9 3 4 6 0 7 7 7  - - 1 9 7 . 8 8 2 7 9 6 2  

When H < 0 the bifurcation is supercritical and the periodic orbit is 
stable. A spiral chaos emerges from the periodic orbit as e increases. 
When H > 0 the bifurcation is subcritical and the periodic orbit is 
unstable. For details see Section 3.3. 

in one period becomes two (Figure 5b). For further increasing of value of 
e, spiral chaos discovered by Vance emerges at e = 10 and its cycle time 
increases with e (Figure 5c, d). 

4. Discussion. Two prey species without a predator can coexist only for 
rather weak competition, that is, in a case where a < ba/b2 and 13 < b2/b 1. 
Addition of a predator into the competitive system, however, enlarges the 
possibility of stable coexistence in the cases where a >~ bx/b 2 or 3 >~ bJbx.  
Three cases of coexistence are possible. The first is coexistence of three 
species at equilibrium for o~3 < 1. Further, for o~ + 13 < 2 three species are 
globally stable, namely, any trajectory starting in positive initial state con- 
verges to an equilibrium. The second is stable oscillatory coexistence with 
a small amplitude for c~ > bl/b2 and 13 > b2/b 1. The last is periodic or non- 
periodic coexistence for a >~ bl/b2, 13 ~ b J b  t (or t~ ~< bx/b2, (3 ~ b2/ba) and 
t~3 >/ 1. This non-periodic motion is a spiral chaos of Vance which bifurcates 
from a periodic motion of the Hopf type when the predation rate increases. 
These results enhance the validity of  Paine's suggestion. 

The result by Lubchenco can also be verified. Suppose that b i = 1 (i = 1, 
2, 3). Since o~ < 13 in Figure 4 except for Figure 4(b), prey xl is competitively 
superior to prey x2. When e > ta, that is, the predator prefers dominant 
prey x~, three-species coexistence is possible. When e < /~ coexistence is 
impossible. Theorem 7 and Figure 3 imply, however, that an oscillatory 
coexistence is possible for the system with no dominant competing species 
if competitive interactions between prey are rather great. 
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Figure 5. These  figures depic t  one -d imens iona l  xl ,  x2, z p o p u l a t i o n  changes  
wi th  respec t  to  t i m e  t and  th ree -d imens iona l  x l ,  x 2, z p o p u l a t i o n  space for  
a = 1.0,/3 = 1.5, d = 0.5,/.t = 1.0 and  b i = 1 (i = 1, 2, 3). The H o p f  bi furca-  
t ion  pa rame te r  e* = 5 . 5 9 7 4 9 8 2 1 .  (a) ( above)  L imi t  cycle wi th  a per iod  o f  
a b o u t  31 .25  o f  the  H o p f  t y p e  for  e = 6; (b)  per iodic  so lu t ion  wi th  two peaks  
in one  per iod  for  e = 8;  (c) Vance ' s  spiral  chaos  for  e = 10; (d)  cycle t ime  

increases compared  w i th  (c)  for  e ~ 13. 
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On the other hand, Maly's experiment (1975) showed that the addition 
of  an alternative, less desirable prey (Euglena) changes only slightly the 
stability of a one-predator, one-prey (Rotifer Asplanchna-Paramecium) 
community.  The one-predator, one-prey system is described as: 

d [x~(t)]= [xl(t)(b~--xl(t)--ez(t))] 

-~ [_ z(t) d I_ z(t) (-- ba + dexl(t)) d " 
(26) 

Similarly to the proof  of Theorem 5, predator z and prey xl cannot coexist 
stably if and only if 

e <~ b3/(dbl). (27) 

When (27) holds and an alternative prey x2 is less desirable for a predator, 
that is, 

U < e, (28) 

Figures 2, 3 and 4 imply that coexistence of three species is impossible. 
This coincides with Maly's experiments. On the other hand, if x2 is a pre- 
ferable prey for z, that is, 

/~ > e, (29) 

Figures 2(b) and 4(b) show that three-species stable coexistence is possible 
from (27) and (29). This seems to be reasonable from the biological point 
of  view, but it should be noted that coexistence is impossible if ~ ~< b~/b= 
and /3 /> b2/b~ (Figure 4a, b). Therefore the effect of the addition of a de- 
sirable prey into a one-prey, one-predator system is closely connected 
with competitive abilities of  two prey species. 

5. Conclusion. Applying Lyapunov's direct method and the Hopf bifurca- 
tion theory, the stabilizing effect of  the addition of  one predator into two- 
competing-prey communities is discussed. The presence of one predator 
feeding on two competing prey species increases the possibility of stable 
persistence even for the case where two competitors cannot coexist in a 
subcommunity.  Three patterns of coexistence are possible mathematically: 
(1) coexistence at equilibrium state, (2)s table  oscillatory coexistence of 
the Hopf type and (3) the spiral chaos of Vance. The last one is nonsense 
from the biological point of view since the population densities of three 
species become nearly equal to zero in the evolution of the system. A 
relationship between the existence of the periodic motion suggested by 
Fujii and the spiral chaos discovered by Vance is also demonstrated. The 
former bifurcates from a stable equilibrium by the Hopf theory and the 
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la t ter  emerges  f rom the per iodic  m o t i o n  when  the  p reda t ion  rate  increases. 

I t  is shown  tha t  this p r eda to r -med ia t ed  coexis tence  can be a t ta ined  by a 

close re la t ionship be tween  the preferences  o f  a p r eda to r  and the c o m p e t i n g  
abilities o f  the p rey  and tha t  the  pa t t e rns  o f  coexis tence  relate  to the s t rength 

o f  the compe t i t i ve  in terac t ions  be tween  the prey.  

The  au thors  wish to acknowledge  with thanks  the valuable c o m m e n t s  o f  

the referees.  

A P P E N D I X  

Proo f  o f  L e m m a  1. Since (x*, 0) is locally stable, 

[:'] b - - A  < 0  (A1) 

is satisfied by Theorem 2. Define subsets of ( 1 . . . . .  n} of indices such that 

P = {/Ix/* > 0}, R = { i l x~  = 0}, Q = {p + 1 . . . . .  n} (A2) 

and function V(x) such that 

q 

iEP jER k=l  

where wi(i = 1 . . . . .  p),  ~ k ( k  = 1 . . . .  , q) are positive constant numbers. The time 
derivative of V(x)  along a solution of (13) becomes 

--yT~t/[(Aqp --Aqp)x--bq q-Aqpx*] -- ~ wjxj (l]ix~--b ] , ( A 4 )  

iER �9 

where x = (xl . . . .  Xp) T, y = (xp+ 1 . . . . .  xn)  T, W = diag(wt) and Ir = diag(~i). Hence 

dV(x( t ) )  
I < o (AS) 

dt (13) 

in R~+Q = [ ( x ,  y)Ix i > 0 (i C P), xj >~ 0 ( j  GR), Yk ~ 0 (k = 1 . . . . .  q)} and the equality 
holds only for (x, y) = (x*, 0) by (15), (A1) and A E S w. Therefore the theorem is 
proved by the extended Lyapunov's direct theory (LaSalle, 1960). 

Proo f  o f  Theorem 4. Define function W such that 
2 

W = Z dxt + z. (A6) 
i : 1  
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The time derivative of W along a solution of  (1) is described as 

f l_xl Exll 
d W(x(t) ,  z ( t ) )  [ = (d, d) - -  b3z. 

dt (1) L-/3x2 b2 --  x2 x2 
(A7) 

For  any X 2> 0 the following inequality holds from (A6), (A7), a 2> 0 and/3 2> 0: 

2 

d.__W [ + )tW ~ ~ d()t + b i - -  x t)x  i + z()t - -  bs). 
dt (1) /=1 

(A8) 

For  )t < b 3 the right-hand side of (A8) is bounded above for all (x l ,  x2, z) ER~_ o. Hence 

dW [ + X W < P ,  (A9) 

dt (1) 
which results in 

0 <. W(x(t) ,  z ( t ) )  <~P/X + W(x(O), z(0))exp(--)t t) ,  (A10) 

where P is a positive constant number. By (A6) and (A 10) all the components  of the 
solution (x( t ) ,  z ( t ) )  are bounded. 

Proo f  o f  Theorem 5. Matrix A (a, 13) of (2)  belongs to S w if and only if a/3 < 1 (Takeuchi 
eta l . ,  1978), where 

( A l l )  

From Theorem 1 a positive equilibrium (bl - -  ab2, b2 - - /3bl) / ( I  - -  or/3) must be globally 
stable if a < bl /b  2 and /3 < b2/bl (which imply or/3 < 1). Matrix A(a ,  b2/bl), satisfying 
ot < bl/b2, belongs to S w. The (bl ,  0) is a locally stable equilibrium of (2) if/3 2> b2/bl. 
From Lemma 1 (bl,  0) is a globally stable one of (2) with A(a, /3)  satisfying a < bl/b2 
and/3 ) b2/b 1. For  ot = bl/b2,/3 2> b~/bl, (hi ,  0) is also globally stable from Theorem 3. 
The other cases can be proved similarly. 

Proo f  o f  L e m m a  2. We choose w > 0 such that  

w = (d, d, 1); (AI2)  

then 

WA + A T W  = (or /3) 2d , (AI3)  

0 

which results in A E ffw, since a +/3 ~< 2, d 2> 0. 
If there exists W = diag(wi) 2> 0 such that  B = WA + A T w  is non-negative definite, 

then all the principal minors of B are non-negative. Determinants of matrices obtained 
by deleting the first (or second) row and column from B are non-negative if and only if 

w I = w 2 = dw3. (A14) 
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The determinant of  the matrix obtained by deleting the third row and column is 4wlw 2 -- 
(w xa + w2/3) 2, which becomes w~ (4 --  (a + ~)2) from (A14). Hence a +/3 ~< 2. 

Proof o f  Theorem 6. Three cases (a  ~< bj/b2, ~ <~ b2/bl), (or <~ bl]b2, 13 >1 b2/bl) and 
(a >~ bl/b2, 13 <. b2/ba) are possible, since a + 13 < 2. For each case the parameter space 
represented by e and/a is divided by two hyperbolae;~ 1 = 0, ~2 = 0 and their asymptotes; 
e = b3/(dbl) ,/2 = b3/(db2) and a straight line ~ = 0, as shown in Figures 2(a) and 4(a, b) 
respectively. Equilibriums (E3), (E+o+), (Eo++), (E++o), (E+oo) and (Eo+o) are non- 
negative in the regions indicated. 

(i) From Lemma 2, A E Sw- When (E3) is non-negative equalities of (ii) in Theorem 3 
hold because of the definition of (E3). For a +/3 < 2 function (7) vanishes identically 
along xi(t) = x* (i = 1, 2), which results in x(t)  = z*. Hence (iii) in Theorem 3 holds. 
Therefore (E3) is globally stable. 

(ii) Condition a +/3 < 2 implies that IA[ > 0, which results i n x l <  0, ~2<  0 or ~ <  0 
since (E3) is not non-negative. Suppose that ~t < 0. If/2 >/b3/(db2) , (Eo++) is non-negative 
and globally stable from xl < 0 and Theorem 3. If /1 < b3/(db~) and cz > bt/b2, then 
(Eo+ 0) is globally stable (Figure 4b). (E++ o) [or (E+oo)] is globally stable if a <~ bl]b 2 
and 13 ~< b2/b a (or ~ ~< bl]b 2 and 13 >1 b2]bl). For the case ~2 < 0 or ~ < 0 the theorem 
can be proved similarly. 

Proof o f  Theorem 7. Theorem 7 is proved by the following Hopf bifurcation theorem 
(Marsden and McCraken, 1976). 

HOPF BIFURCATION THEOREM. 
(1) Let Xu be a C k (k >1 5) vector field on R n. Assume that Xu(a(/2)) = 0 for all/2 and 
let the spectrum o f  dXu(a(/2)) satisfy: 

(i) o(dXu(a~)))  C {z I Rez "( 0} for/2 </ao, (A15) 
(ii) dXu(a~)  ) has two complex eon/ugate, simple eigenvalues ~(~), X(~)at la =#o, 

(iii) dRe~(/.t)/d,u [ :~ 0, (A16) 
ta=/~ 0 

(iv) ~,(,U0) ~ 0, (A17) 
(v) the rest o f  e(dXu(a(t~)) ) remains in the left-half plane bounded from the imaginary 

axis for/2 =/20. 

Here dX~ represents the linearized matrix o f  X~ and a(dXu) is the set o f  eigenvalues o f  
matrix dX u. Then there exists a dosed orbit with a period about 27r/[X(#o) [. 
(2) Choose coordinates so that X u 3 1 2 !XA,, X~,  X~, ), where X• and X~ are those in the 
eigenspaces to X(Po), ~(~to), and ~ ts one m some complembntary shbspaee. Choose 
the coordinates so that 

dXuo(a(/2o))= IX( o)[ 0 �9 (A18) 

o d3X~o (a(~o) 

I f  the coefficient H computed by (A 19) below is negative, the periodic orbits occur for 
> b~ and are attracting. I f  it is positive, the orbits occur for/2 </2o and are repelling 

on the center manifold. 
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H ~  1 1 2 2 2 2 _ _  I 1 1 2 1 2 2 Jr X:~xX~r x - -  X ~ y X ~ y ) / l ) k ( j d O ) l  ( -  x~xx?~y + X ~ y X ~ y  + XxxXxy X~rXxy 

+ <Fx~(3X~x~ + 2 ~ x?~)' 2F~vCX~ + X~)  X~z) + Fyy(3X~z + + 

+ Xlxxx + 2 1 S f i y y  "t- S x y y  q- X2xxy)/lX(~to)l. (A 19) 

~v 

y 

where 

Here X ~  etc. are twice partial derivatives o f  Xi~ with respect to x at la = lao, and 

21X(/~0)12+~ 2 - 2 l X ~ 0 ) ' ~  2lX(/ao)l 2 l I - X x 3 x l  

,+o,,+ ,+o,,+ [ 1 + /  (A20) 

= X~ and A = ~(~2 + 41~o)12) .  (A21) 

Proof  o f  Theorem 7. 
(i) In the parametric region (A) of Figure 3(b), 

Ial > 0 and (x~, x~, z*) > 0, (A22) 

which result in 

ao > 0 and a 2 > 0. (A23) 

On the boundary indicated by X2 -- 0 of (A), 

ao > 0, al > 0 and a2 = 0, (A24) 

which imply that 

a0al --  a~ )" 0. (A25) 

Similarly, on the boundary indicated by Z = 0 of (A), 

a 0 >  0, a 1 < 0 anda  2 = 0 (A26) 

from t~/3 > 1. (A26) implies that 

aoat -- a2 < O. (A27) 

Function f (e ,  t.t) = ao (e,/d)al(e ,/2) -- as(e, ~) is continuous. Therefore there exists at least 
one solution e* for any/~ fixed in (A) such that 

f(e*,/a) = 0 (A28) 

from (A25) and (A27). The minimum value of such an e* is denoted by e*, From (A23) 
and (A28), 

ai(e*) > 0, i = 1, 2, 3. (A29) 

(A25) and (A29) imply conditions (i), (iv) and (v); further, (A28) results in (ii) of the 
Hopf bifurcation theorem, where /1 and /10 of the conditions are replaced by e and e* 
in this theorem. Condition (iii) is (22) in Theorem 7. Therefore there exists a closed 
orbit by the Hopf bifurcation theorem (1). In the parametric region (B) the proof can 
be given similarly. 

(ii) In the parametric region (C), 
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IAI < 0 and (xt, x~, z*) > 0, (A30) 

which result in 

a2< 0. (A31) 

If the matrix has pure imaginary eigenvalues, then (A31) implies that the other real 
eigenvalue is positive. Therefore there exists no closed orbit of the Hopf type. Hence 
Theorem 7 is proved. 

After a very lengthy computation, we can get equations: 

xxix ~- - -  S i y y  ( i  = 1, 2, 3) (A32) 

1 2 1 2 
X ~ x  x -~" ~- 0 X;yy = Xxyy = Xxxy (A33) 

Fxx = -- Fyy, (A34) 

which imply that function H (A19) becomes 

H = 2(Fxx(Xlxz --X~z) + Fxy(X~, z + X2xz)). (A35) 

Hence the stability criterion of a closed orbit is established. Examples of numerical 
values of H are given in Tables II and III. 
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