

How it Works?

- Each user has a profile
- Users rate items
- Explicitly: score from $1 . .5$
- Implicitly: web usage mining
- Time spent in viewing the item
- Navigation path
- System does the rest, How?
- This is what we will show today

Formal Model

- $\boldsymbol{X}=$ set of Customers
- $\boldsymbol{S}=$ set of Items
- Utility function $\boldsymbol{u}: X \times \boldsymbol{S} \rightarrow \boldsymbol{R}$
- $\boldsymbol{R}=$ set of ratings
- \boldsymbol{R} is a totally ordered set
- e.g., 0-5 stars, real number in [0,1]

(1) Gathering Ratings

- Explicit
- Ask people to rate items
- Doesn't work well in practice - people can't be bothered
- Implicit
- Learn ratings from user actions
. E.g., purchase implies high rating
- What about low ratings?

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
- For item \boldsymbol{i}, find other similar items
- Estimate rating for item \boldsymbol{i} based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$s_{i j} \ldots$ similarity of items i and $r_{\text {aj }} \ldots$ rating of user a on item j
$N(i ; a) \ldots$ set items rated by a similar to i

Idea: Interpolation Weights $w_{i j}$
- Use a weighted sum rather than weighted avg.:

$$
\widehat{r_{x i}}=b_{x i}+\sum_{j \in N(i ; x)} w_{i j}\left(r_{x j}-b_{x j}\right)
$$

- A few notes:
- $\boldsymbol{N}(\boldsymbol{i} ; \boldsymbol{x}) \ldots$ set of movies rated by user \boldsymbol{x} that are similar to movie \boldsymbol{i}
- $w_{i j}$ is the interpolation weight (some real number)
- We allow: $\sum_{j \in N(i x)} w_{i j} \neq 1$
- $\boldsymbol{w}_{i j}$ models interaction between pairs of movies (it does not depend on user \boldsymbol{x})

Putting It All Together

- Example:
- Mean rating: $\mu=3.7$
- You are a critical reviewer: your ratings are 1 star lower than the
mean: $\boldsymbol{b}_{\boldsymbol{x}}=\mathbf{- 1}$
Star Wars gets a mean rating of 0.5 higher than average movie: \boldsymbol{b}_{i}
$=+0.5$
- Predicted rating for you on Star Wars:
$=3.7-1+0.5=3.2$

Stochastic Gradient Descent

- Stochastic gradient decent:
- Initialize \boldsymbol{P} and \boldsymbol{Q} (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors

For each r_{x};

- $\varepsilon_{x i}=2\left(r_{x i}-q_{i} \cdot p_{x}\right)$
(derivative of the "error")
$q_{i} \leftarrow q_{i}+\eta_{1}\left(\varepsilon_{x i} p_{x}-\lambda_{2} q_{i}\right) \quad$ (update equation)
- $p_{x} \leftarrow p_{x}+\eta_{2}\left(\varepsilon_{x i} q_{i}-\lambda_{1} p_{x}\right) \quad$ (update equation)
- 2 for loops:
- For until convergence:
- For each r_{xi}

Compute gradient, do a "step" $\quad \eta \ldots$ learning rate

Fitting the New Model

- Solve:
$\min _{Q, P} \sum_{(x, i) \in R}\left(r_{x i}-\left(\mu+b_{x}+b_{i}+q_{i} p_{x}\right)\right)^{2}$
$+\left(\lambda_{1} \sum_{i}\left\|q_{i}\right\|^{2}+\lambda_{2} \sum_{x}\left\|p_{x}\right\|^{2}+\lambda_{3} \sum_{x}\left\|b_{x}\right\|^{2}+\lambda_{4} \sum_{i}\left\|b_{i}\right\|^{2}\right)$
λ is selected via grid-
search on a validation set
- Stochastic gradient decent to find parameters

Note: Both biases $\boldsymbol{b}_{\boldsymbol{x}} \boldsymbol{b}_{\boldsymbol{i}}$ as well as interactions $\boldsymbol{q}_{\boldsymbol{i} \boldsymbol{i}} \boldsymbol{p}_{\boldsymbol{x}}$ are treated as parameters (we estimate them)

Evaluation Metrics for Recommendation Systems

- Recall@K $=\frac{\text { Number of Relevant } \text { Items } \operatorname{in} T \text { Top } K}{\text { Total Number of } \operatorname{Reteven}}$

A movie recommender system: Recommend 10 movies for every user. A user has seen 5 movies, the recommendation list has 3 of them.

$$
\begin{gathered}
\text { Recall@K }=\frac{3}{5}=0.6 \\
\text { Precision@K }=\frac{3}{10}=0.3
\end{gathered}
$$

- $F 1 @ K=\frac{2 \times \text { Precision@ } K \times \text { Recall@K }}{\text { Precision@K }+ \text { Recall@ } K}$
- Mean Average Precision
$M A P=\frac{1}{\mid \text { Users } \mid} \sum_{u=1}^{\mid \text {Users } \mid} A P_{u}$
A movie recommender system: Recommend K movies, number of relevant items Q
Recommendation List: \{Star Wars-Return of Jedi, Back To the Future, The Matrix\}
Ground Truth: \{Terminator 2, Back To the Future, The Matrix\} $A P=(1 / 3)[(1 / 2)+(2 / 3)]=0.38$
$A P=\frac{1}{Q} \sum_{q=1}^{K} P @ q$

Evaluation Metrics for Recommendation Systems

- Mean Reciprocal Rank: the position of the first relevant item in the recommendation list

$M R R=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\text { rank }_{i}} \quad$| A movie recommender system: Recommend K movies, number of relevant items N |
| :--- |
| Recommendation List: \{Sta Wars-Return of Jedi, Back To the Future, The Matrix\} |
| Ground Truth: $\{$ Back To the Future, The Matrix\} |
| $M R R=1 / 2 \times[(1 / 2)+(1 / 3)]=0.41$ |

- Normalized Cumulative Discounted Gain (NDCG): a measure of how good a ranked list is
- NDCG@k= $\begin{array}{ll}\text { DCG@k } \\ I D G G @ k & \begin{array}{l}\text { rel }(i): \text { relevancy score of item } i \\ I D G G @ k: D C G @ k \text { of the "ideal" r }\end{array}\end{array}$

Trel(i) Ground Truth: \{Terminator 2, Back To the Future The Marrix\}

- DCG@k= $\sum_{i=1}^{K} \frac{r e l(i)}{\log _{2}(i+1)} \quad \begin{aligned} & \text { Ground Truth: \{Terminator 2, Back To the Future, The Matrix\} } \\ & \text { rel(Terminator 2) }=1 \text { rel(Back To the Future) }=1 \text { rel(The Matrix })=1 \\ & \text { list of Recommendations: \{Star Wars-Returnof }\end{aligned}$

List of Recommendations: \{Star Wars-Return of Jedi, Back To the Future, The Matrix\} $D C G @ 3=\frac{0}{\log _{2}(1+1)}+\frac{1}{\log _{2}(2+1)}+\frac{1}{\log _{2}(3+1)}$ $I D C G @ 3=\frac{1}{\log _{2}(1+1)}+\frac{1}{\log _{2}(2+1)}+\frac{1}{\log _{2}(3+1)}$ $N D C G @ 3=\frac{\text { DCG@3 }}{\text { IDCG@3 }}$

