
1

1

Data Mining
Recommendation Models

Prof. Dr. Şule Gündüz Öğüdücü

Recommendations

Items

Search Recommendations

Products, web sites,
blogs, news items, …

2

Examples:

http://www.mmds.org

Recommender Systems

 Recommend new content

3

Recommender Systems

 Recommend similar items

4

good
or

bad??

Recommender Systems

 Recommend co-occurred items

5

Recommender Systems

 identify items that we may like

6

2

The Long Tail

7http://www.mmds.org

N
um

be
r

of
 P

ur
ch

as
es

 p
er

 w
ee

k

Items ranked by popularity

Items might be books,
movies, music, videos
or news articles

Retail
and
online

Items available
only online

8

Recommendation Process

 The right information is
delivered to the right people at
the right time.

Recommender
System

User
Representation

Set of items:
•Movies
•Books
•CDs
•Web documents

:
:

Subset of items:
•Movies
•Books
•CDs
•Web documents

:
:

Input Output

9

Users Items

The Recommendation System Space

Item-Item
Links

User-User
Links

Links derived from
similar attributes,

similar content, explicit
cross references

Links derived from
similar attributes,

explicit connections

Observed preferences
(Ratings, purchases,
page views, laundry

lists, play lists)

Recommender Systems: Methods

How it Works?

 Each user has a profile
 Users rate items

 Explicitly: score from 1..5
 Implicitly: web usage mining

 Time spent in viewing the item
 Navigation path
 Etc…

 System does the rest, How?
 This is what we will show today

Formal Model

 X = set of Customers
 S = set of Items

 Utility function u: X × S R
 R = set of ratings
 R is a totally ordered set
 e.g., 0-5 stars, real number in [0,1]

http://www.mmds.org

3

Utility Matrix

0.4

10.2

0.30.5

0.21

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

http://www.mmds.org

Key Problems

(1) Gathering “known” ratings for matrix
 How to collect the data in the utility matrix

(2) Extrapolate unknown ratings from the known ones
 Mainly interested in high unknown ratings
 We are not interested in knowing what you don’t like but what you like

(3) Evaluating extrapolation methods
 How to measure success/performance of recommendation methods

(1) Gathering Ratings

 Explicit
 Ask people to rate items
 Doesn’t work well in practice – people can’t be bothered

 Implicit
 Learn ratings from user actions

 E.g., purchase implies high rating

 What about low ratings?

http://www.mmds.org

(2) Extrapolating Utilities

 Key problem: Utility matrix U is sparse
 Most people have not rated most items
 Cold start:

 New items have no ratings
 New users have no history

 Three approaches to recommender systems:
1) Content-based
2) Collaborative
3) Hybrid Models

Collaborative Filtering

 Method
 Correlation between user’s interests (such as votes and trails)

 Results are captured in a generally sparse matrix (users x items)
 Similarities between items

 Problems
 Sparsity
 Cold-start
 Diversity

Data Structures

 Each user has a profile
 Users rate items

 Explicitly: a user consciously express his
or her preference for a title
 score from 1..5

 Implicitly: interprete user behavior or
selections to impute a vote or preference
using web usage mining
 Time spent in viewing the item
 Navigation path
 purchase history
 Etc…

u1

u2
…

ui
...

un

Items: I

i1 i2 … ij … im

3 1.5 …. … 2

2

1 rij

3

Users: U

4

Collaborative Filtering: A Framework

u1

u2
…

ui
...

un

Items: I

i1 i2 … ij … im

3 1.5 …. … 2

2

1

3

rij=?

The task:
Q1: Find Unknown ratings?
Q2: Which items should we
recommend to this user?
.
.
.

Unknown function
f: U x I R

Users: U

Collaborative Filtering

 User-Centric
 The preferences of a large group of people are

registered. These preferences could be items bought by
the user on a e-commerce Web site, or Web pages
visited by the user

 According to a similarity metric a subgroup of people
are selected whose preferences are similar to the
current user's preferences.

 An average of the preferences of that subgroup is
calculated.

 Options on which the current user has no experience
yet are selected to generate a recommendation set.

 Item Centric
 Build an item-item matrix
 Determine the relationship between pairs of items

Algorithms for CF

 rij= vote of user i on item j
 Ii = items for which user i has voted
 Mean vote for user i is

 Predicted vote for “active user” a is weighted sum

i

i

Ij
ij

i

r
I

r
||

1

similarity between user i and active user a
normalizer

n

i
iijaaj rriawrr

1

))(,(

How to Measure Similarity?

 k-nearest neighbour:
 Compute distance between all other users and active

user

𝑑 = 𝑟 − 𝑟

 aggregate ratings from K nearest neighbors to predict
active user’s rating

else

)aneighbors(i if
iawk 0

1
),(

Finding “Similar” Users

 Let ra be the vector of user a’s ratings
 Jaccard similarity measure

 Problem: Ignores the value of the rating

 Cosine similarity measure
 wc(a,i)= ⋅

|| ||⋅|| ||

 Problem: Treats missing ratings as “negative”

 Pearson correlation coefficient
 Sai =IaIi= items rated by both users a and i

ra = [*, _, _, *, ***]
ri = [*, _, **, **, _]

ra, ri as sets:
ra = {1, 4, 5}
ri = {1, 3, 4}

ra, ri as points:
ra = {1, 0, 0, 1, 3}
ri = {1, 0, 2, 2, 0}

aiai

iijaaj

iijaaj

p
rrrr

rrrr

iaw

Sj

2

Sj

2

S j

)()(

))((

),(ai

ui

ua

i1 im

http://www.mmds.org

Item-Item Collaborative Filtering
 So far: User-user collaborative filtering
 Another view: Item-item

 For item i, find other similar items
 Estimate rating for item i based on ratings for similar items
 Can use same similarity metrics and prediction functions as in user-user

model

);(

);(

aiNj ij

aiNj ajij

ai s

rs
r

sij… similarity of items i and j
raj…rating of user a on item j
N(i;a)… set items rated by a similar to i

http://www.mmds.org

5

Item-Item CF (|N|=2)

121110987654321

455311

3124452

534321423

245424

5224345

423316

users

m
o

vi
es

- unknown rating - rating between 1 to 5

http://www.mmds.org

Item-Item CF (|N|=2)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

- estimate rating of movie 1 by user 5

m
o

vi
es

http://www.mmds.org

Item-Item CF (|N|=2)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Neighbor selection:
Identify movies similar to
movie 1, rated by user 5

m
o

vi
es

1.00

-0.18

0.41

-0.10

-0.31

0.59

sim(1,m)

Here we use Pearson correlation as similarity:
1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6
row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rowshttp://www.mmds.org

Item-Item CF (|N|=2)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Compute similarity weights:
s1,3=0.41, s1,6=0.59

m
o

vi
es

1.00

-0.18

0.41

-0.10

-0.31

0.59

sim(1,m)

http://www.mmds.org

Item-Item CF (|N|=2)

121110987654321

4552.6311

3124452

534321423

245424

5224345

423316

users

Predict by taking weighted average:

r5.1 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

m
o

vi
es

𝒓𝒂𝒊 =
∑ 𝒔𝒊𝒋 ⋅ 𝒓𝒂𝒋𝒋∈𝑵(𝒊;𝒂)

∑𝒔𝒊𝒋

http://www.mmds.org

0.41

0.59

CF: Common Practice
 Define similarity sij of items i and j
 Select k nearest neighbors N(i; a)

 Items most similar to i, that were rated by a

 Estimate rating rai as the weighted average:

baseline estimate for rai μ = overall mean movie rating
 ba = rating deviation of user x

= (avg. rating of user a) – μ
 bi = rating deviation of movie i

);(

);(

aiNj ij

aiNj ajij

ai s

rs
r

Before:

);(

);(
)(

aiNj ij

aiNj ajajij

aiai s

brs
br

𝒃𝒂𝒊 = 𝝁 + 𝒃𝒂 + 𝒃𝒊

http://www.mmds.org

Global
Effect

Local Effect

6

Modeling Local & Global Effects

 Global:
 Mean movie rating: 3.7 stars
 The Sixth Sense is 0.5 stars above avg.
 Joe rates 0.2 stars below avg.

 Baseline estimation:
Joe will rate The Sixth Sense 4 stars

 Local neighborhood (CF/NN):
 Joe didn’t like related movie Signs
 Final estimate:

Joe will rate The Sixth Sense 3.8 stars

http://www.mmds.org

𝒃𝒂𝒊 = 𝝁 + 𝒃𝒂 + 𝒃𝒊=3.7+(-0.2)+0.5=4

 μ = overall mean movie rating
 ba = rating deviation of user x

= (avg. rating of user a) – μ
 bi = rating deviation of movie i

Pros/Cons of Collaborative Filtering
 + Works for any kind of item

 No feature selection needed
 - Cold Start:

 Need enough users in the system to find a match
 - Sparsity:

 The user/ratings matrix is sparse
 Hard to find users that have rated the same items

 - First rater:
 Cannot recommend an item that has not been previously rated
 New items, Esoteric items

 - Popularity bias:
 Cannot recommend items to someone with unique taste
 Tends to recommend popular items

 - Similarity:
 Similarity measures are “arbitrary”: Pairwise similarities neglect

interdependencies among users

http://www.mmds.org

);(

);(
)(

aiNj ij

aiNj ajajij

aiai s

brs
br

Idea: Interpolation Weights wij

 Use a weighted sum rather than weighted avg.:

 𝑟 = 𝑏 + 𝑤 𝑟 − 𝑏

∈ (;)

 A few notes:
 𝑵(𝒊; 𝒙) … set of movies rated by user x that are similar to movie i
 𝒘𝒊𝒋 is the interpolation weight (some real number)

 We allow: ∑ 𝒘𝒊𝒋 ≠ 𝟏𝒋∈𝑵(𝒊,𝒙)

 𝒘𝒊𝒋 models interaction between pairs of movies
(it does not depend on user x)

http://www.mmds.org

Recommendations via Optimization
 Idea: Let’s set values w such that they work well on known

(user, item) ratings
 How to find such values w?
 Idea: Define an objective function and solve the optimization problem

 Find wij that minimize SSE on training data!

 𝐽 𝑤 = 𝑏 + 𝑤 𝑟 − 𝑏

∈ ;

− 𝑟

,

 Think of w as a vector of numbers
Predicted rating

True
rating

http://www.mmds.org

Detour: Minimizing a function

 A simple way to minimize a function 𝒇(𝒙):
 Compute the take a derivative 𝜵𝒇

 Start at some point 𝒚 and evaluate 𝜵𝒇(𝒚)

 Make a step in the reverse direction of the gradient: 𝒚 = 𝒚 − 𝜵𝒇(𝒚)

 Repeat until converged

𝑓

𝑦

𝑓 𝑦 + 𝛻𝑓(𝑦)

http://www.mmds.org

Interpolation Weights
 We have the optimization

problem, now what?
 Gradient decent:

 Iterate until convergence: 𝒘 ← 𝒘 − 𝜵𝒘𝑱

 where 𝜵𝒘𝑱 is the gradient (derivative evaluated on data):

𝛻 𝐽 =
𝜕𝐽(𝑤)

𝜕𝑤

= 2 𝑏 + 𝑤 𝑟 − 𝑏

∈ ;

− 𝑟 𝑟 − 𝑏

,

for 𝒋 ∈ {𝑵 𝒊; 𝒙 , ∀𝒊, ∀𝒙 }

else ()
= 𝟎

 Note: We fix movie i, go over all rxi, for every movie 𝒋 ∈ 𝑵 𝒊; 𝒙 , we
compute 𝝏𝑱(𝒘)

𝝏𝒘𝒊𝒋

 … learning rate

while |wnew - wold| > ε:
wold = wnew

wnew = wold - ·wold

𝐽 𝑤 = 𝑏 + 𝑤 𝑟 − 𝑏

∈ ;

− 𝑟

7

Geared
towards
females

Geared
towards
males

Serious

Funny

Latent Factor Models (e.g., SVD)

The Princess
Diaries

The Lion King

Braveheart

Lethal
Weapon

Independence
Day

AmadeusThe Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

http://www.mmds.org

Recap: SVD
 Remember SVD:

 A: Input data matrix
 U: Left singular vecs
 V: Right singular vecs
 : Singular values

 So in our case:
“SVD” on Netflix data: R ≈ Q · PT

A = R, Q = U, PT = VT

 We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

min
, ,

𝐴 − 𝑈Σ𝑉

∈

 Note two things :
 SSE and RMSE are monotonically related:

 𝑹𝑴𝑺𝑬 =
𝟏

𝒄
𝑺𝑺𝑬 SVD is minimizing RMSE

 Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating).
But our R has missing entries!

Am

n

m

n

VT
U

http://www.mmds.org

Latent Factor Models
 “SVD” on Netflix data: R ≈ Q · PT

 For now let’s assume we can approximate the rating matrix R as a
product of “thin” Q · PT

 R has missing entries but let’s ignore that for now!

 Basically, we will want the reconstruction error to be small on
known ratings and we don’t care about the values on the
missing ones

39

45531

312445

53432142

24542

522434

42331

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1
≈

users

ite
m

s

PT

Q

ite
m

s

users

R

SVD: A = U VT

factors

fa
cto

rs

http://www.mmds.org

Ratings as Products of Factors

 How to estimate the missing rating of
user x for item i?

40

45531

312445

53432142

24542

522434

42331

ite
m

s

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

≈

ite
m

s

users

users

?

PT

𝒓𝒙𝒊 = 𝒒𝒊 ⋅ 𝒑𝒙

= 𝒒𝒊𝒇 ⋅ 𝒑𝒙𝒇

𝒇
qi = row i of Q
px = column x of PT

fa
ct

o
rs

Qfactors
http://www.mmds.org

Ratings as Products of Factors

 How to estimate the missing rating of
user x for item i?

41

45531

312445

53432142

24542

522434

42331

ite
m

s

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

≈

ite
m

s

users

users

?

PT

fa
ct

o
rs

Qfactors

𝒓𝒙𝒊 = 𝒒𝒊 ⋅ 𝒑𝒙

= 𝒒𝒊𝒇 ⋅ 𝒑𝒙𝒇

𝒇
qi = row i of Q
px = column x of PT

http://www.mmds.org

Ratings as Products of Factors

 How to estimate the missing rating of
user x for item i?

42

45531

312445

53432142

24542

522434

42331

ite
m

s

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

≈

ite
m

s

users

users

?

Q
PT

2.4

f
fa

ct
o

rs

f factors

𝒓𝒙𝒊 = 𝒒𝒊 ⋅ 𝒑𝒙

= 𝒒𝒊𝒇 ⋅ 𝒑𝒙𝒇

𝒇
qi = row i of Q
px = column x of PT

http://www.mmds.org

8

Latent Factor Models

 SVD isn’t defined when entries are missing!
 Use specialized methods to find P, Q

 min
,

∑ 𝑟 − 𝑞 ⋅ 𝑝, ∈

 Note:
 We don’t require cols of P, Q to be orthogonal/unit length
 P, Q map users/movies to a latent space
 The most popular model among Netflix contestants

45531

312445

53432142

24542

522434

42331

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

PT

Q

users
ite

m
s

�̂� = 𝑞 ⋅ 𝑝

factors

fa
cto

rsite
m

s

users

http://www.mmds.org

Latent Factor Models

 Our goal is to find P and Q such tat:

𝒎𝒊𝒏
𝑷,𝑸

𝒓𝒙𝒊 − 𝒒𝒊 ⋅ 𝒑𝒙

𝟐

𝒊,𝒙 ∈𝑹

45531

312445

53432142

24542

522434

42331

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

PT

Q

users

ite
m

s

factors

facto
rs

ite
m

s

users

http://www.mmds.org

Back to Our Problem
 Want to minimize SSE for unseen test data
 Idea: Minimize SSE on training data

 Want large k (# of factors) to capture all the signals
 But, SSE on test data begins to rise for k > 2

 This is a classical example of overfitting:
 With too much freedom (too many free parameters) the model starts fitting noise

 That is it fits too well the training data and thus not generalizing well to unseen test data

1 3 4
3 5 5

4 5 5
3
3

2 ? ?
?

2 1 ?
3 ?

1

http://www.mmds.org

Dealing with Missing Entries

 To solve overfitting we introduce regularization:
 Allow rich model where there are sufficient data
 Shrink aggressively where data are scarce

i
i

x
x

training
xixi

QP

qppqr
2

2

2

1
2

,

)(min

1 3 4
3 5 5

4 5 5
3
3

2 ? ?
?

2 1 ?
3 ?

1

1, 2 … user set regularization parameters

“error” “length”

Note: We do not care about the “raw” value of the objective function,
but we care in P,Q that achieve the minimum of the objective

http://www.mmds.org

Stochastic Gradient Descent
 Want to find matrices P and Q:

 Gradient decent:

 Initialize P and Q (using SVD, pretend missing ratings are 0)
 Do gradient descent:

 P P - ·P
 Q Q - ·Q
 where Q is gradient/derivative of matrix Q:

𝛻𝑄 = [𝛻𝑞] and 𝛻𝑞 = ∑ −2 𝑟 − 𝑞 𝑝 𝑝, + 2𝜆 𝑞

 Here 𝒒𝒊𝒇 is entry f of row qi of matrix Q

How to compute gradient
of a matrix?
Compute gradient of every
element independently!

i
i

x
x

training
xixi

QP

qppqr
2

2

2

1
2

,

)(min

http://www.mmds.org

Stochastic Gradient Descent
 Gradient Descent (GD) vs. Stochastic GD

 Observation: 𝛻𝑄 = [𝛻𝑞] where

𝛻𝑞 = −2 𝑟 − 𝑞 𝑝 𝑝

,

+ 2𝜆𝑞 = 𝑸

𝒙,𝒊

𝒓𝒙𝒊

 Here 𝒒𝒊𝒇 is entry f of row qi of matrix Q

 𝑸 = 𝑸 − 𝑸 = 𝑸 − ∑ 𝑸𝒙,𝒊 (𝒓𝒙𝒊)

 Idea: Instead of evaluating gradient over all ratings evaluate it for each
individual rating and make a step

 GD: 𝑸𝑸 − ∑ 𝑸(𝒓𝒙𝒊)𝒓𝒙𝒊

 SGD: 𝑸𝑸 − 𝜇𝑸(𝒓𝒙𝒊)

 Faster convergence!
 Need more steps but each step is computed much faster

9

SGD vs. GD

 Convergence of GD vs. SGD

Iteration/step

V
a

lu
e

 o
f

th
e

 o
b

je
c

ti
ve

 f
u

n
c

ti
o

n

GD improves the value
of the objective function
at every step.
SGD improves the value
but in a “noisy” way.
GD takes fewer steps to
converge but each step
takes much longer to
compute.
In practice, SGD is
much faster!

Stochastic Gradient Descent
 Stochastic gradient decent:

 Initialize P and Q (using SVD, pretend missing ratings are 0)
 Then iterate over the ratings (multiple times if necessary) and update

factors:
For each rxi:

 𝜀 = 2(𝑟 − 𝑞 ⋅ 𝑝) (derivative of the “error”)

 𝑞 ← 𝑞 + 𝜀 𝑝 − 𝜆 𝑞 (update equation)

 𝑝 ← 𝑝 + 𝜀 𝑞 − 𝜆 𝑝 (update equation)

 2 for loops:
 For until convergence:

 For each rxi

 Compute gradient, do a “step” … learning rate

Putting It All Together

 Example:
 Mean rating: = 3.7
 You are a critical reviewer: your ratings are 1 star lower than the

mean: bx = -1
 Star Wars gets a mean rating of 0.5 higher than average movie: bi

= + 0.5
 Predicted rating for you on Star Wars:

= 3.7 - 1 + 0.5 = 3.2

Overall
mean rating

Bias for
user x

Bias for
movie i

𝑟 = 𝜇 + 𝑏 + 𝑏 + 𝑞 ⋅ 𝑝
User-Movie
interaction

Fitting the New Model
 Solve:

 Stochastic gradient decent to find parameters
 Note: Both biases bx, bi as well as interactions qi, px are treated as

parameters (we estimate them)

regularization

goodness of fit

 is selected via grid-
search on a validation set

i
i

x
x

x
x

i
i

Rix
xiixxi

PQ

bbpq

pqbbr

2

4

2

3

2

2

2

1

2

),(,

)(min

Evaluation Metrics for Recommendation Systems

 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =

 𝐹1@𝐾 =
× @ × @

@ @

 Mean Average Precision

𝑀𝐴𝑃 =
1

𝑈𝑠𝑒𝑟𝑠
𝐴𝑃

𝐴𝑃 =
1

𝑄
𝑃@𝑞

53

A movie recommender system: Recommend
10 movies for every user. A user has seen 5
movies, the recommendation list has 3 of
them.

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
3

5
= 0.6

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =
3

10
= 0.3

A movie recommender system: Recommend K movies, number of relevant items Q
Recommendation List: {Star Wars-Return of Jedi, Back To the Future, The Matrix}
Ground Truth: {Terminator 2, Back To the Future, The Matrix}

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 = 0, 1 2, 2 3⁄⁄
𝐴𝑃 = 1 3⁄ (1 2) + (2 3)⁄⁄ = 0.38

Evaluation Metrics for Recommendation Systems

 Mean Reciprocal Rank: the position of the first relevant item in the recommendation list

𝑀𝑅𝑅 =
1

𝑁

1

𝑟𝑎𝑛𝑘

 Normalized Cumulative Discounted Gain (NDCG): a measure of how good a ranked list is

 𝑁𝐷𝐶𝐺@𝑘 =
@

@

 𝐷𝐶𝐺@𝑘 = ∑
()

()

54

A movie recommender system: Recommend K movies, number of relevant items N
Recommendation List: {Star Wars-Return of Jedi, Back To the Future, The Matrix}
Ground Truth: {Back To the Future, The Matrix}

𝑀𝑅𝑅 = 1 2 × (1 2) + (1 3)⁄⁄ = 0.41⁄

𝑟𝑒𝑙(𝑖): relevancy score of item 𝑖
𝐼𝐷𝐶𝐺@𝑘: 𝐷𝐶𝐺@𝑘 of the “ideal” recommendation algorithm
Ground Truth: {Terminator 2, Back To the Future, The Matrix}
rel(Terminator 2) = 1 rel(Back To the Future) = 1 rel(The Matrix) = 1
List of Recommendations: {Star Wars-Return of Jedi, Back To the Future, The Matrix}

𝐷𝐶𝐺@3 =
0

log (1 + 1)
+

1

log (2 + 1)
+

1

log (3 + 1)

𝐼𝐷𝐶𝐺@3 =
1

log (1 + 1)
+

1

log (2 + 1)
+

1

log (3 + 1)

𝑁𝐷𝐶𝐺@3 =
@

@

10

References

 Lecture slides of Mining Massive Datasets

55

