FIZ102E – Lecture 5 Current, Resistance, and Electromotive Force

Alexandr Jonas

Department of Physics Engineering

İTÜ

What did we cover last week?

Parallel plate capacitor

Capacitor = two conductors separated by an insulator or vacuum

Capacitance

$$C = \frac{Q}{V_{ab}}$$

Units:

1 Farad [F] = 1 C/V

Charged parallel plate capacitor \rightarrow uniform electric field between the plates

Capacitance in vacuum:

$$C = \varepsilon_0 \frac{A}{d}$$

Capacitors in series and parallel

Capacitors in series

All capacitors have the same charge Q

$$V = V_1 + V_2 = \frac{Q}{C_1} + \frac{Q}{C_2} = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right)$$

$$\left| \frac{1}{C} = \frac{V}{Q} = \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \right|$$

 $\left| \frac{1}{C} = \frac{V}{Q} = \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \right|$ In general: $\left| \frac{1}{C} = \sum_{i} \frac{1}{C_i} \right|$

Capacitors in parallel

All capacitors have the same voltage V

$$Q = Q_1 + Q_2 = C_1 V + C_2 V = (C_1 + C_2)V$$

$$C = \frac{Q}{V} = C_1 + C_2$$

In general:

$$C = \sum_{i} C_{i}$$

Energy storage in capacitors

Capacitor charging:

Work for moving charge *dq* between plates with potential difference *v*

Total work for charging the capacitor from 0 to final charge Q

$$dW = v dq = \frac{q}{C} dq$$

$$W = \int_0^Q dW = \int_0^Q \frac{q}{C} dq =$$
$$= \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

Dielectrics

Dielectric = insulating material between capacitor plates

Dielectric polarizes in electric field due to charge induction

→ electric field is attenuated

Dielectric constant

$$K = \frac{E_0}{E} = \frac{C}{C_0} \ge 1$$

Electric field E_0 Capacitance C_0

Electric field E Capacitance C

Dielectrics

Induced charge modifies effective charge density on the capacitor plates

 σ . . . charge density on capacitor plates

 σ_i . . . induced charge density

 $\sigma - \sigma_i \dots$ effective charge density

Vacuum

Electric field in a capacitor

$$E_0 = \frac{\sigma}{\varepsilon_0}$$

Capacitance

$$C_0 = \varepsilon_0 \frac{A}{d}$$

$$\oint_{\substack{\text{closed} \\ \text{surface } S}} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{Q_{\text{enclosed}}}{\varepsilon_0}$$

Dielectric

$$E = \frac{\sigma - \sigma_i}{\varepsilon_0} = \frac{E_0}{K} = \frac{\sigma}{K \varepsilon_0} = \frac{\sigma}{\varepsilon}$$

$$C = \varepsilon \frac{A}{d}$$

$$\oint_{\substack{\text{closed} \\ \text{surface } S}} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{Q_{\text{enclosed}}}{\varepsilon}$$

where $\varepsilon = K \varepsilon_0$ is the <u>dielectric permittivity</u>

What will we cover today?

Current

Resistivity

Resistance

Electromotive force and circuits

Energy and power in electric circuits

