Introduction to Topology

Quiz 1, February 23rd, 2016

Name and Last Name:

\qquad
Student Number: \qquad

1. Assume $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ are two sequences of real numbers. Assume $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to a number $a \in \mathbb{R}$, and that the difference sequence $\left(a_{n}-b_{n}\right)_{n \in \mathbb{N}}$ converges to 0 . Prove that $\left(b_{n}\right)_{n \in \mathbb{N}}$ is also convergent, and that it converges to the same number $a \in \mathbb{R}$.

Solution: We know the following:

$$
\begin{aligned}
& \forall \alpha>0, \exists A \in \mathbb{N}, \forall a>A,\left|a_{n}-a\right|<\alpha \\
& \forall \beta>0, \exists B \in \mathbb{N}, \forall b>B,\left|a_{n}-b_{n}\right|<\beta
\end{aligned}
$$

Given any $\epsilon>0$, take $\alpha=\beta=\epsilon / 2$. We have two integers A and B corresponding to the α and β we have just chosen. Let $N=\max \{A, B\}$. Then for every $n>N$ we have

$$
\left|b_{n}-a\right|=\left|b_{n}-a_{n}+a_{n}-a\right| \leq\left|b_{n}-a_{n}\right|+\left|a_{n}-a\right|<\epsilon
$$

i.e. $\left(b_{n}\right)_{n \in \mathbb{N}}$ converges to a.
2. Show that the infinite union

$$
\bigcup_{n \in \mathbb{N}}[-1, \sin (n)]
$$

is a connected subset in \mathbb{R}.

Solution: Let $X=\bigcup_{n \in \mathbb{N}}[-1, \sin (n)]$. We need to show that

$$
\forall a, b, x \in \mathbb{R}, \quad \text { if } a, b \in X \text { and } x \in[a, b] \text { then } x \in X
$$

So, take $a, b, x \in \mathbb{R}$ such that $a, b \in X$ and $a \leq x \leq b$. Since $a, b \in X$, there are two integers $n, m \in \mathbb{N}$ such that $a \in[-1, \sin (n)]$ and $b \in[-1, \sin (m)]$. Then

$$
x \in[a, b] \subseteq[-1, \max \{\sin (n), \sin (m)\}]=[-1, \sin (n)] \cup[-1, \sin (m)]
$$

and therefore, $x \in[-1, \sin (n)] \cup[-1, \sin (m)]$.

