Introduction to Topology Quiz 4, May 2nd, 2016

Name:

\qquad
Number: \qquad

1. Consider the square determined by the points $(1,1),(-1,1),(1,-1)$ and $(-1,1)$ on the xy-plane. Consider the region Ω inside the square without the boundary. Let us use the ordinary distance function

$$
d((x, y),(a, b))=\sqrt{(x-a)^{2}+(y-b)^{2}}
$$

(a) For each point $(x, y) \in \Omega$, find an explicit expression for a real number $\delta>0$ such that

$$
B_{\delta}(x, y)=\left\{(a, b) \in \mathbb{R}^{2} \mid d((x, y),(a, b))<\delta\right\}
$$

lies completely inside Ω. [Hint: What is the shape of the open ball $B_{\delta}(x, y)$? Calculate the distances of (x, y) to all sides of the square. How does this help to find δ ?]

Solution: The shape of the open ball centered at a point (x, y) with radius δ with respect to the Euclidean metric is a disk centered at (x, y) with radius δ. So, given a point (x, y) in our square, its distance to the sides of the square are $|1+x|,|1-x|,|1+y|$ and $|1-y|$. The δ we are looking for is the minimum of all of these distances

$$
\delta=\min \{|1+x|,|1-x|,|1+y|,|1-y|\}
$$

(b) Show that Ω is open.

Solution: We already showed for all (x, y) in our square there exists $\delta>0$ such that $B_{\delta}(x, y)$ lies completely in our square. This already proves that the set is open.
(c) What if I changed my distance function on \mathbb{R}^{2} ? The ball you considered uses the ordinary distance. If we use the taxicab distance $\ell((x, y),(a, b))=|x-a|+|y-b|$, what is the shape of $B_{\delta}(x, y)$? In that case, find an explicit expression for $\delta>0$ such that $B_{\delta}(x, y) \subseteq \Omega$.

Solution: The open ball centered at (x, y) with radius δ with respect to the taxi-cab distance is the square whose corners are at points $(x-\delta, y),(x, y+\delta)$, $(x+\delta, y)$ and $(x, y-\delta)$. This square lies completely in the disk centered at (x, y) of radius δ. So, the same δ works in this case too.

$$
\delta=\min \{|1+x|,|1-x|,|1+y|,|1-y|\}
$$

Introduction to Topology Quiz 4, May 2nd, 2016

2. Let (X, d) be a discrete metric space, i.e. $d(x, y)=1$ whenever $x \neq y$ and $d(x, y)=0$ whenever $x=y$. Assume (Y, g) is another metric space and let $f: X \rightarrow Y$ is an arbitrary function. Show that f is continuous. [Hint: Consider a convergent sequence in (X, d). What happens when a sequence is convergent in a discrete metric space?]

Solution: In a discrete metric space a sequence $\left(x_{n}\right)$ is convergent if and only if it is eventually constant. That is, $\left(x_{n}\right)$ is converges to an element a iff there is an index N such that $x_{n}=a$ for all $n \geq N$. But then $f\left(x_{n}\right)=f(a)$ for the same index n. Then $g\left(f\left(x_{n}\right), f(a)\right)=0<\epsilon$ for every $\epsilon>0$. In other words, $\left(f\left(x_{n}\right)\right)$ converges to $f(a)$. Since (x_{n}) was arbitrary, f must be continuous.

