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Maxwell’s Equations and the Lorentz Force

Gauss’ law∮
~E · d~A =

Qenc

ε0

Gauss’ law for magnetism∮
~B · d~A = 0

Faraday’s law∮
~E · d~l = − d

dt

∫
~B · d~A

Generalized Ampere’s law∮
~B · d~l = µ0iC+µ0ε0

d

dt

∫
~E · d~A

Force on a particle with charge q and velocity ~v moving

in ~E & ~B fields

~F = q
(
~E + ~v × ~B

)
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Electrostatics: Charges are at rest.

Gauss’ law

∮
~E · d~A =

Qenc

ε0
charge Q is source of ~E

Faraday’s law (static)∮
~E · d~l = 0 we can define an electric potential.

Electric force on q in ~E

~FE = q~E
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Magnetostatics: Steady currents

No magnetic charges.

Gauss’ law for magnetism∮
~B · d~A = 0

Current iC is source of ~B

Ampere’s law (static)∮
~B · d~l = µ0iC

Magnetic force on q moving with ~v in ~B

~FM = q~v × ~B
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Learning goals

• To determine the magnetic field produced by a moving

charge

• To study the magnetic field of an element of a

current-carrying conductor

• To calculate the magnetic field of a long, straight,

current-carrying conductor and a wire bent into a circle.

• To study the magnetic force between current- carrying

wires.

• To use Ampere’s Law to calculate magnetic fields of

symmetric current distributions.

• How microscopic currents within materials give them their

magnetic properties.
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Summary of last week



Reminder: Lorentz Force

• In the previous chapter we studied the forces exerted on

moving charges (~F = q~v × ~B) and on current-carrying

conductors (~F = I ~̀× ~B) in a magnetic field.

• We didn’t worry about how the magnetic field got there;

we simply took its existence as a given fact.

• We have also seen that there is no magnetic charge

(monopole) as implied by Gauss’ law for magnetic fields∮
~B · d~A = 0.

• But how, then, are magnetic fields created?

• Magnetic fields are created by moving electric charges.
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Fields: Particle–Field–Particle interactions

• The electric force arises in two stages:

(1) a charge produces an electric field in the space around it

(2) a second charge responds to this field.

• Magnetic forces also arise in two stages:

(1) a moving charge or a collection of moving charges (that is,

an electric current) produces a magnetic field

(2) current or moving charge responds to this magnetic field,

and so experiences a magnetic force.

• In this chapter we study the first stage in the magnetic

interaction –that is, how magnetic fields are produced by

moving charges and currents.
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Magnetic field of a moving charge



The magnetic field of a moving charge

• In electrostatics the electric field of a point

charge was

~E =
1

4πε0

q

r2
r̂

• This is not a separate law, but is derived

from Gauss’ law∮
~E · d~A =

Qenc

ε0

(EA = 4πr2 = q/ε0)
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The magnetic field of a moving charge

• Is there a similar expression for the

magnetic field produced by a point charge?

• A moving charge generates a magnetic field

that depends on the velocity of the charge.

~B =
µ0

4π

q~v × r̂

r2
(1)
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The magnetic field of a moving charge

• A moving charge q generates a

magnetic field that depends on

the velocity, ~v of the charge.

~B =
µ0

4π

q~v × r̂

r2
(2)

• r̂ is a unit vector from the source

point to the field point.

• The magnitude of the field

|~B| = µ0

4π

qv sinφ

r2
(3)
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The magnetic field of a moving charge

• Magnetic permeability constant

µ0 = 4π × 10−7 T ·m/A (2)

• Electric and magnetic constants

are related:

c =
1

√
µ0ε0

= 2.998×108 m/s (3)

where c is the speed of light.
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Ex: Magnetic field of a moving charge

Question

A charge of q = 4.5µC moves with

velocity v = 3× 103 m/s. What is the

magnetic field at the origin of the

coordinate system when the charge is at

position x = −4 m and y = 3 m.
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Ex: Magnetic field of a moving charge

Solution

• ~r = 4̂ı− 3̂, r =
√

42 + (−3)2 = 5 m.

r̂ = 4/5̂ı− 3/5̂, ~v = 3× 103 m/ŝı

~B =
µ0

4π

q~v × r̂

r2

= 10−7 (4.5µC)(3× 103 m/ŝı)× (4/5̂ı− 3/5̂)

(5 m)2

= −3.24× 10−11 T k̂

where we used ı̂× ̂ = k̂ and

ı̂× ı̂ = 0.
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Ex: Magnetic force between two positive charges

Question

Consider two positive charges moving in

opposite directions in space a distance r

apart at some moment in time.

FM/FE =?
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Ex: Magnetic force between two positive charges

Solution

E field exists (moving or not!)

~FE =
1

4πε0

q1q2

r2
̂
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Ex: Magnetic force between two positive charges

Solution

• Motion (~v2 = v2̂ı) of q2 produces

~B =
µ0

4π

q2v2̂ı× ̂

r2
, ı̂× ̂ = k̂

• Charge q1 is moving with ~v1 = −v1̂ı

in this magnetic field and so is acted

on by the force

~FM = q1~v1 × ~B = −q1v1
µ0

4π

q2v2

r2
ı̂× k̂

=
µ0

4π

q1q2v1v2

r2
̂

where we used ı̂× k̂ = −̂.
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Ex: Magnetic force between two positive charges

Solution

Bringing the results together

~FE =
1

4πε0

q1q2

r2
̂

~FM =
µ0

4π

q1q2v1v2

r2
̂

FM
FE

=
µ0

4π

q1q2v1v2

r2

4πε0r
2

q1q2

= µ0ε0v1v2

= v1v2/c
2

Magnetic force is much smaller than the

electrical force.
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Magnetic field of a current

element



Magnetic field of a current element

• The total magnetic field of

several moving charges is the

vector sum of each field.

• So a current of moving charges

creates a B field!
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Magnetic field of a current element

•
d~B =

µ0

4π

dQ~vd × r̂

r2
(4)

•
dQ = nqAd` (5)

law of Biot and Savart

d~B =
µ0

4π

I d~̀× r̂

r2
(6)
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Magnetic field of a current carrying wire

d~B =
µ0

4π

I d~̀× r̂

r2

As ~B =
∫

d~B

~B =
µ0

4π

∫
I d~̀× r̂

r2

15



Magnetic field of a straight

current carrying conductor



Magnetic field of a straight wire

~B =
µ0

4π

∫
I d~̀× r̂

r2

d~̀= dy ̂, ~r = x̂ı− ŷ, r =
√
x2 + y2

r̂ ≡
~r

r
=
x

r
ı̂− y

r
̂

d~̀× r̂ = dy ̂ ×
(x
r
ı̂− x

r
̂
)

= dy ̂ × x

r
ı̂ = −x dy

r
k̂

~B = −
µ0I

4π

∫
x dy

r3
k̂ = −

µ0Ix

4π

∫ a

−a

dy

(x2 + y2)3/2
k̂

= −
µ0Ix

4π

y

x2
√
x2 + y2

∣∣∣∣∣
a

−a

k̂ = −
µ0I

2πx

a
√
a2 + x2

k̂
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Magnetic field of an infinitely long straight wire

So we found

~B = −µ0I

2πx

a√
a2 + x2

k̂

for the wire lying between −a and a.

If the wire is infinitely long (a→∞)

we obtain

~B = −µ0I

2πx
k̂ (7)

This is a good approximation for the

field of a wire with a� x.
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Direction of the magnetic field of a straight wire

At a distance r from the wire the

magnitude of the field is

B =
µ0I

2πr
(8)

and the direction is determined by the

RHR.
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Ex: Field of a long wire

Question

A long wire carries a current of 10 A.

(a) What is the magnetic field at a distance 1 cm?

(b) Is it hazardeous for living organisms?
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Ex: Field of a long wire

Question

A long wire carries a current of 10 A.

(a) What is the magnetic field at a distance 1 cm?

(b) Is it hazardeous for living organisms?

Answer (a)

I = 10 A and r = 1 cm = 10−2 m

B =
µ0I

2πr
=

(4π × 10−7 T ·m/A) × 10 A

2π × 10−2 m

= 2× 10−4 T
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Ex: Field of a long wire

Question

A long wire carries a current of 10 A.

(a) What is the magnetic field at a distance 1 cm?

(b) Is it hazardeous for living organisms?

Answer (b)

In order to decide whether a magnetic field of 2 × 10−4 T is

hazardeous for living organisms we should compare it with some

other fields humans are exposed to.

The Earth has a magnetic field of B⊕ ' 0.5× 10−4 T to which

all living organisms on Earth a subjected to since at least a

billion years! We are usually more than 1 cm away from such

wires. Note also that a patient in an MRI device is exposed to

about 1 T which also is not found to be hazardous.
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Ex: Magnetic field of two wires

Question

Two long, straight,

parallel wires

perpendicular to the

xy-plane are seperated

by a distance 2d. Each

wire carries a current I

but in opposite

directions. Find ~B at

points P1, P2 and P3.
End-on view of the two-wire system

described in the question.
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Ex: Magnetic field of two wires

Solution

The fields support each

other in the region

between the wires and

partially cancel each

other on the left of the

first wire and right of the

second wire.

Map of the magnetic field produced

by the two conductors. The field lines

are closest together between the

conductors, where the field is

strongest.
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Ex: Magnetic field of two wires

Solution
~B = ~B1 + ~B2

~B = − µ0I

2π(2d)
̂ +

µ0I

2π(4d)
̂ At P1

~B = +
µ0I

2π(d)
̂ +

µ0I

2π(d)
̂ At P2

~B = +
µ0I

2π(3d)
̂− µ0I

2π(d)
̂ At P3
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Ex: Magnetic field of two wires

Question

Two long, straight, parallel wires

perpendicular to the xy-plane are

seperated by a distance 2d. Each wire

carries a current I both in the

+z-direction. Find ~B at point P on

the y-axis.
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Ex: Magnetic field of two wires

Solution

The magnitudes are the same.

BR = BL =
µ0I

2πR

The y-components will cancel each

other. Only the x-components will

prevail and add-up:

B = 2BR cos θ, ~B = −2BR cos θ̂ı

where

cos θ =
√
R2 − d2/R =

√
1− d2/R2
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Ex: Magnetic field of current segment

This is a calculation for a general

position relative to the current

segment but we will be using it for

highly symmetric situatiuons.
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Ex: Magnetic field of current segment

Show that the ~B at point P is

~B =
µ0I

4πR
(sin θ2 − sin θ1)k̂
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Ex: Magnetic field of current segment

Show that the ~B at point P is

~B =
µ0I

4πR
(sin θ2 − sin θ1)k̂

For an infinitely long wire

θ1 = −π/2 & θ2 = +π/2

~B =
µ0I

4πR
[1− (−1)]k̂ =

µ0I

2πR
k̂

which is what we obtained before.
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Ex: Magnetic field at the center of a square loop

What is the magnetic field at the

center of the loop?
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Ex: Magnetic field at the center of a square loop

Note that θ1 = −π/4 and θ2 = +π/4

and R = L/2. For one segment

~B1 =
µ0I

4πR
(sin θ2 − sin θ1)k̂

=
µ0I

2πL

[√
2

2
−

(
−
√

2

2

)]
k̂

=

√
2µ0I

2πL
k̂
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Ex: Magnetic field at the center of a square loop

Note that θ1 = −π/4 and θ2 = +π/4

and R = L/2. For one segment

~B1 =
µ0I

4πR
(sin θ2 − sin θ1)k̂

=
µ0I

2πL

[√
2

2
−

(
−
√

2

2

)]
k̂

=

√
2µ0I

2πL
k̂

Each segment makes an identical

contribution

~B = 4~B1 =
2
√

2µ0I

πL
k̂
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Force between parallel conductors



Force between parallel conductors

• The lower conductor produces a ~B

field that, at the position of the

upper conductor has magnitude

B = µ0I/2πr.

• The force that this field exerts on a

length L of the upper conductor is
~F = I ′ ~̀× ~B. Thus

F = I ′LB =
µ0II

′L

2πr
(9)

• The force per unit length on each

conductor is

F

L
=
µ0II

′

2πr
24



Force between parallel conductors

• The conductors attract each other

if the currents are in the same

direction and repel if they are in

opposite directions.
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Ex

Question

What force does each wire exert on the other?

Solution

F

L
=
µ0II

′

2πr

=
(4π × 10−7 T ·m/A)(1.5× 104 A)2

2π × 4.5× 10−3 m

= 1× 104 N/m
25
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Magnetic field of a circular

current loop



Magnetic field of curved segment

Queston

What is the magnetic field at the

center of the curved segment?
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Magnetic field of curved segment

Soluton

• d~B = µ0
4π

Id~̀×r̂
r2

• d~̀⊥ r̂

dB =
µ0

4π

I d`���
1

|̂r|����:
1

sin 90◦

r2
�

• d` = R dα, r = R

• dB = µ0I
4π

Rdα
R2

• B = µ0I
4πR

∫ θ
0 dα

B =
µ0I

4πR
θ �

where θ is in radians. 26



Magnetic field of curved segment

Curved segment

B =
µ0I

4πR
θ

Full circle

B =
µ0I(2π)

4πR
=
µ0I

2R

27



Ex: A loop

Question

Calculate the magnetic field (magnitude

and direction) at a point P due to a

current I = 12.0 A in the wire shown in

Figure. Segment BC is an arc of a circle

with radius R2 = 30.0 cm, and point P is at

the center of curvature of the arc. Segment

DA is an arc of a circle with radius

R1 = 20.0 cm, and point P is at its center

of curvature. Segments CD and AB are

straight lines of length 10.0 cm each.
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Ex: A loop

Solution

θ = 120◦ = 2π/3 radians

B =
µ0Iθ

4πR
=
µ0I

6R
Single segment of radius R

~B =
µ0I

6R1
⊗+

µ0I

6R2
�

=
µ0I

6

(
1

R1
− 1

R2

)
⊗

=
(4π × 10−7 T ·m/A)(12.0 A)

6

(
1

0.2 m
− 1

0.3 m

)
⊗

' 4× 10−6 T⊗
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Magnetic field of a circular current loop

r =
√
a2 + x2,

cos θ = a/r

Question

• Use Biot-Savart Law to find field

a distance x away on axis from a

coil with current I.

• The result should give

B = µ0I/2a for x = 0.

29



Magnetic field of a circular current loop

r =
√
a2 + x2,

cos θ = a/r

Solution

• r̂ = ~r/r

d~B =
µ0

4π

I d~̀× r̂

r2

• d~̀⊥ r̂,

dB =
µ0

4π

I d`���
1

|̂r|����:
1

sin 90◦

r2

• dBx = dB cos θ

dBx =
µ0

4π

I d` cos θ

r2
=
µ0

4π

I d` a

r3 29



Magnetic field of a circular current loop

r =
√
a2 + x2,

cos θ = a/r

Solution

• We found

dBx =
µ0

4π

I d` a

r3

• Integrate

Bx =
µ0Ia

4πr3
�
�
���

2πa∫
d`

=
µ0Ia

2

2r3

=
µ0

2

Ia2

(a2 + x2)3/2
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Magnetic field of a circular current loop

r =
√
a2 + x2,

cos θ = a/r

Solution

• We found

Bx =
µ0

2

Ia2

(a2 + x2)3/2

• For x = 0 this simplifies to

Bx =
µ0

2

Ia2

a3
=
µ0I

2a

matching the field we found at

the center of a circular loop.
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Magnetic field of a circular current loop

r =
√
a2 + x2,

cos θ = a/r

Result in terms of µ

• We found

Bx =
µ0

2

Ia2

(a2 + x2)3/2

• Recall µ = IA = Iπa2 is the

magnetic moment

Bx =
µ0

2π

µ

(a2 + x2)3/2

• If x� a

Bx =
µ0

2π

µ

|x|3 29



Magnetic field of a circular current loop

r =
√
a2 + x2,

cos θ = a/r

Field of a coil

• If there are N turns in the loop

Bx =
µ0

2

NIa2

(a2 + x2)3/2

• Recall µ = NIA = NIπa2 is the

magnetic moment

Bx =
µ0

2π

µ

(a2 + x2)3/2

remains unchanged

• If x� a

Bx =
µ0

2π

µ

|x|3 29



Magnetic field of a circular current loop

r =
√
a2 + x2,

cos θ = a/r

Bx =
µ0

2

NIa2

(a2 + x2)3/2
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Direction of the field

Direction of field using right-hand rule.
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Direction of the field

Magnetic field lines produced by the current in a circular loop.

At points on the axis, the ~B field has the same direction as ~µ of

the loop.

30



Direction of the field

Magnetic field lines produced by the current in a circular loop.

At points on the axis, the ~B field has the same direction as ~µ of

the loop.

30



Magnetic field of two closely spaced rings

With the addition of a

second current loop the

magnetic field becomes

more uniform in the near

the center of the loops.
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Magnetic field of many closely spaced rings

With the addition of further

current loops the magnetic field

becomes more uniform near the

center of the loops.
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Solenoid

A circuit element with N = thousands of closely spaced turns

(windings), each of which can be regarded as a circular loop

carrying te same current.
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Solenoid

The fields are similar but you can’t get access to the internal

region of the bar magnet.
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Solenoid

Exact calculations show that for a long, closely wound solenoid,

half of these field lines emerge from the ends and half “leak

out” through the windings between the center and the end, as

the figure suggests. Here n = N/L
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Solenoid

z2 − z1 = L, n = N/L. In length

dz there are n dz turns each

with current I:

di = Indz

Recall that for a circular loop of

radius a, current I we habe

obtained the field as

Bx =
µ0

2

Ia2

(a2 + x2)3/2

Replace I → di, a→ R, x→ z

dBz =
µ0

2

di R2

(R2 + z2)3/2

Integrating this from z1 to z2

Bz =
µ0

2
nI

 z2√
R2 + z22

−
z1√

R2 + z21

 (Field at the center z = 0) 34



Solenoid

Let us add some symmetry by
choosing z1 = −L/2 and z2 = L/2

Bz =
µ0

2
nI

 z2√
R2 + z22

−
z1√

R2 + z21


=
µ0

2
nI

(
L/2√

R2 + (L/2)2
−

−L/2√
R2 + (−L/2)2

)

=
µ0

2
nI

(
L√

R2 + (L/2)2

)

35



Ideal solenoid limit

Ideal solenoid (L� R) assumption simplifies further

Bz =
µ0

2
nI

 L√
�
�>

0

R2 + (L/2)2


=
µ0

2
nI

(
L

L/2

)
= µ0nI

We later will derive this from Ampere’s law.
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Ex: Field produced by a rotating disc of charge

Question

A thin dielectric disk with radius a

has a total charge +Q distributed

uniformly over its surface. It rotates

with angular velocity ω about an axis

perpendicular to the surface of the

disk and passing through its center.

(a) Find the magnetic field at the

center of the disk.

(b) Find the magnetic field at a

distance x along the rotation axis.

37



Ex: Field produced by a rotating disc of charge

Solution (a)

• We have found the magnetic field at the

center of a ring of radius r carrying current

I as B = µ0I/2r

• If the total charge is +Q the surface charge

density is σ = Q/πa2

• A ring with radius r and thickness dr has

area dA = 2πr dr and hence its charge is

dq = σ dA =
Q

�πa
2

2�πr dr

• The period of rotation is T = 2π/ω and the

current corresponding of the rotation of the

ring is then dI = dq /T

dI =
Qω

πa2
r dr
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Ex: Field produced by a rotating disc of charge

• The field due to current dI is then

dB = µ0 dI /2r

dB =
µ0Qω

2πa2
dr

• Integration gives

B =
µ0Qω

2πa2

∫ a

0
dr =

µ0Qω

2πa

• Recall the magnetic moment of the disc is

µ = 1
4
Qa2ω. Then

B =
2µ0µ

πa3
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Ex: Field produced by a rotating disc of charge

Solution (b)

• For a ring of radius a with current I we

have found

B =
µ0

2

Ia2

(a2 + x2)3/2

• For radius r and current dI = Qω
πa2

r dr

dB =
µ0

2

dI r2

(r2 + x2)3/2

• Thus integration gives

B =
µ0Qω

2πa2

∫ a

0

r3 dr

(r2 + x2)3/2

=
µ0Qω

2πa2

(
a2 + 2x2
√
a2 + x2

− 2x

)

∫
r3 dr

(r2 + x2)3/2
=

r2 + 2x2
√
r2 + x2

+C

see https://www.

integral-calculator.com/
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Ampere’s law

• Suppose several long, straight

conductors pass through surface

bounded by closed loop path.

• The line integral of total

magnetic field is proportional to

algebraic sum of currents.
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Ampere’s law

• Ienc = algebraic sum of currents

enclosed or linked by integration

path

• Evaluate by using right- hand

sign rule.
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Ampere’s law

• Valid for conductors & paths of

any shape.

• If integral around closed path is

zero...

• does not necessarily mean that

B field is zero everywhere

• only that total current through

an area bounded by path is

zero.
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Field of a infinitely long straight wire

• Ampere’s law relates electric current

to line integral around a closed path.∮
~B · d~l =

∮
B dl = B

∮
dl = B 2πr

• Ienc = I∮
~B · d~l = µ0Ienc ⇒ B 2πr = µ0I

⇒ B =
µ0I

2πr

(same with the result we obtained

with Biot-Savart’s law.)
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Ampere’s law for a circular path around a long straight

conductor
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Ampere’s law for a general path around a long straight

conductor

~B · d~l = B dl cosφ & dl cosφ = r dθ
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Ampere’s law for a general path around a long straight

conductor

∮
~B · d~l =

∮ µ0I
2πr r dθ = µ0I

2π

∮
dθ
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Ampere’s law for a general path around a long straight

conductor

∮
dθ is the net change in θ during the trip around the

integration path
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Ampere’s law for a general path around a long straight

conductor

∮
dθ = 2π if I is inside the loop (Fig a) and

∮
dθ = 0 if I is

outside the loop (Fig b)
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Applications of Ampere’s law



Field of a long cylindrical conductor

Question

• Cylindrical conductor with radius R

carries current I.

• Current is uniformly distributed over

cross-sectional area of conductor.

• B =? everywhere.

B =

? for r < R

? for r > R
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Field of a long cylindrical conductor

Answer: For r > R

• ∮
~B · d~l =

∮
B dl = B

∮
dl = B 2πr

• Ienc = I∮
~B · d~l = µ0Ienc ⇒ B 2πr = µ0I

⇒ B =
µ0I

2πr
for r > R

(same with the result we obtained for

the straight wire)
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Field of a long cylindrical conductor

Answer: For r < R

• ∮
~B · d~l =

∮
B dl = B

∮
dl = B 2πr

• Ienc = I(πr2/πR2)∮
~B · d~l = µ0Ienc ⇒ B 2πr = µ0I

r2

R2

⇒ B =
µ0I

2πR2
r for r < R

(increases linearly)
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Field of a long cylindrical conductor

Answer: both

B =

{
µ0I

2πR2 r for r < R
µ0I
2πr

for r > R
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Field of an ideal solenoid

A solenoid consists of a helical winding of wire on a cylinder.
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Field of an ideal solenoid

Field depends on # of turns per meter (n) and current I
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Field of an ideal solenoid

∮
~B · d~l = BL

43



Field of an ideal solenoid

∮
~B · d~l = BL

Ienc = nLI
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Field of an ideal solenoid

∮
~B · d~l = BL

Ienc = nLI∮
~B · d~l = µ0Ienc ⇒ BL = µ0nLI ⇒ B = µ0nI
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Field of an toroidal solenoid

A doughnut-shaped toroidal solenoid, tightly wound with N

turns of wire carrying a current I.
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Field of an toroidal solenoid

∮
~B · d~l = B2πr
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Field of an toroidal solenoid

∮
~B · d~l = B2πr

Ienc = NI
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Field of an toroidal solenoid

∮
~B · d~l = B2πr

Ienc = NI∮
~B · d~l = µ0Ienc ⇒ B =

µ0NI

2πr 44
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Gauss’ law for magnetism

∮
~E · d~A = Qenc/ε0

∮
~B · d~A = 0

The geometry in this case is similar (dipolar) except between

the charges.
45



Gauss’ law for magnetism

∮
~E · d~A = Qenc/ε0

∮
~B · d~A = 0

Electric field lines start from the positive charge and terminate

on the negative one.
45



Gauss’ law for magnetism

∮
~E · d~A = Qenc/ε0

∮
~B · d~A = 0

Magnetic field lines are continuous. No magnetic monopoles!
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Magnetic materials

• We said that all magnetic fields arise

from moving charges.

• Are there really moving charges in

permanent magnets?

• Why do we use iron cores in coils of

transformers?
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Magnetic materials

• We said that all magnetic fields arise

from moving charges.

• Are there really moving charges in

permanent magnets?

• Why do we use iron cores in coils of

transformers?
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The Bohr Magneton

• The atoms that make up all matter

contain moving e−s, and these e−s

form microscopic current loops that

produce B fields of their own.

• µ = IA where A = πr2

• The orbital period T = 2πr/v

• The equivalent current I is the total

charge passing any point on the

orbit per unit time: I = e
T = ev

2πr

• Thus the magnetic moment is

µ =
ev

2πr
πr2 =

1

2
evr

An e− moving with ~v

in a circular orbit of

radius r has an

angular momentum ~L

and an oppositely

directed orbital

magnetic dipole

moment ~µ. 47



The Bohr Magneton

• Using L = mvr in µ = 1
2evr

µ =
e

2m
L

• According to QM angular

momentum is quantized in multiples

of h/2π where

h = 6.62607015× 10−34 J · s
is the Planck’s constant.

• The unit of magnetic moment thus

becomes (by L→ h/2π)

µB =
e

2m

h

2π
= 9.274× 10−24 A ·m2

An e− moving with ~v

in a circular orbit of

radius r has an

angular momentum ~L

and an oppositely

directed orbital

magnetic dipole

moment ~µ.
48



Spin angular momentum and magnetic moment

• Electrons also have an intrinsic

angular momentum, called spin

• The spin angular momentum also

has an associated magnetic moment,

and its magnitude turns out to be

almost exactly one Bohr magneton.

It also has a spin

angular momentum

and an oppositely

directed spin

magnetic dipole

moment.
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Magnetization

• In many materials these magnetic

moments are randomly oriented

and cause no net magnetic field.

• But in some materials an external

field can cause the magnetic

moments to become oriented

preferentially with the field

(~τ = ~µ× ~B), so their magnetic

fields add to the external field.

• classes of magnetic behavior

• paramagnetism

• diamagnetism

• ferromagnetism

to be read from the book.
50
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Magnetization

• the ~B field produced by a current

loop is proportional to the loop’s ~µ.

• The additional B field produced by

microscopic electron current loops is

proportional to ~µtot total per unit

volume V in the material.

• We call this vector quantity the

magnetization of the material
~M = ~µtot/V
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Magnetic permeability and susceptibility

• The additional magnetic field due to magnetization of the

material turns out to be equal simply to µ0
~M:

~B = ~B0 + µ0
~M

• The result is that the magnetic field at any point in such a

material is greater by a dimensionless factor Km, called the

relative permeability of the material, than it would be if the

material were replaced by vacuum:

µ = Kmµ0

• The amount by which the relative permeability differs from

unity is called the magnetic susceptibility

χm = Km − 1 52



Paramagnetism

• Materials having the behavior just

described is said to be paramagnetic.

• Paramagnetic materials having Km

values slightly greater than 1.

• Ex: Aluminum has Km = 1.000022

and so χm = 2.2× 10−5.

• You can hardly notice

paramagnetism in your daily life

since it is a weak effect. See Youtube

link
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Diamagnetism

• In some materials ~µtot of all the

atomic current loops is zero when no

B is present.

• But even these materials have

magnetic effects because an external B

alters e− motions within the atoms,

causing additional current loops and

induced magnetic dipoles.

• In this case the additional B caused by

these current loops is always opposite

in direction to that of the external B.

• Such diamagnetic materials always

have χm < 0 and Km slightly less than

unity. 54



Magnetic Susceptibilities of Paramagnetic and Diamag-

netic Materials
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Ferromagnetism

• Includes iron, nickel, cobalt, and

many alloys containing these

elements.

• Strong interactions between atomic

magnetic moments cause them to

line up parallel to each other in

regions called magnetic domains,

even when no external B is present.

• Within each domain, nearly all of

the atomic magnetic moments are

parallel.

• Km � 1, typically of the order of

1000 to 100,000.
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Summary
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