Sources of magnetic field

FIZ102E: Electricity \& Magnetism

Yavuz Ekşi
İTÜ, Fizik Müh. Böl.

Contents

(1) Summary of last week
(2) Magnetic field of a moving charge
(3) Magnetic field of a current element
(4) Magnetic field of a straight current carrying conductor
(5) Force between parallel conductors
(6) Magnetic field of a circular current loop
(7) Ampere's law

8 Applications of Ampere's law
(9) Gauss' law for magnetism
(10) Magnetic materials

Maxwell's Equations and the Lorentz Force

Gauss' law

$$
\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=\frac{Q_{\mathrm{enc}}}{\epsilon_{0}}
$$

Faraday's law
$\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=-\frac{\mathrm{d}}{\mathrm{d} t} \int \overrightarrow{\mathbf{B}} \cdot \mathrm{~d} \overrightarrow{\mathbf{A}} \quad \oint \overrightarrow{\mathbf{B}} \cdot \mathrm{~d} \overrightarrow{\mathbf{l}}=\mu_{0} i_{\mathrm{C}}+\mu_{0} \epsilon_{0} \frac{\mathrm{~d}}{\mathrm{~d} t} \int \overrightarrow{\mathbf{E}} \cdot \mathrm{~d} \overrightarrow{\mathbf{A}}$

Force on a particle with charge q and velocity $\overrightarrow{\mathbf{v}}$ moving in $\overrightarrow{\mathbf{E}} \& \overrightarrow{\mathbf{B}}$ fields

$$
\overrightarrow{\mathbf{F}}=q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})
$$

Electrostatics: Charges are at rest.

Gauss' law

$$
\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=\frac{Q_{\mathrm{enc}}}{\epsilon_{0}} \quad \text { charge } Q \text { is source of } \overrightarrow{\mathbf{E}}
$$

Faraday's law (static)

$$
\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=0
$$

we can define an electric potential.

Electric force on q in $\overrightarrow{\mathbf{E}}$

$$
\overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}}
$$

Magnetostatics: Steady currents

Gauss' law for magnetism

No magnetic charges.

$$
\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=0
$$

Ampere's law (static)
Current i_{C} is source of $\overrightarrow{\mathbf{B}}$

$$
\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\mu_{0} i_{\mathrm{C}}
$$

Magnetic force on q moving with $\overrightarrow{\mathbf{v}}$ in $\overrightarrow{\mathbf{B}}$

$$
\overrightarrow{\mathbf{F}}_{M}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}
$$

Learning goals

- To determine the magnetic field produced by a moving charge
- To study the magnetic field of an element of a current-carrying conductor
- To calculate the magnetic field of a long, straight, current-carrying conductor and a wire bent into a circle.
- To study the magnetic force between current- carrying wires.
- To use Ampere's Law to calculate magnetic fields of symmetric current distributions.
- How microscopic currents within materials give them their magnetic properties.

Summary of last week

Reminder: Lorentz Force

- In the previous chapter we studied the forces exerted on moving charges $(\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})$ and on current-carrying conductors $(\overrightarrow{\mathbf{F}}=I \vec{\ell} \times \overrightarrow{\mathbf{B}})$ in a magnetic field.
- We didn't worry about how the magnetic field got there; we simply took its existence as a given fact.
- We have also seen that there is no magnetic charge (monopole) as implied by Gauss' law for magnetic fields $\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=0$.
- But how, then, are magnetic fields created?

Reminder: Lorentz Force

- In the previous chapter we studied the forces exerted on moving charges $(\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})$ and on current-carrying conductors $(\overrightarrow{\mathbf{F}}=I \vec{\ell} \times \overrightarrow{\mathbf{B}})$ in a magnetic field.
- We didn't worry about how the magnetic field got there; we simply took its existence as a given fact.
- We have also seen that there is no magnetic charge (monopole) as implied by Gauss' law for magnetic fields $\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=0$.
- But how, then, are magnetic fields created?
- Magnetic fields are created by moving electric charges.

Fields: Particle-Field-Particle interactions

- The electric force arises in two stages:
(1) a charge produces an electric field in the space around it
(2) a second charge responds to this field.
- Magnetic forces also arise in two stages:
(1) a moving charge or a collection of moving charges (that is, an electric current) produces a magnetic field
(2) current or moving charge responds to this magnetic field, and so experiences a magnetic force.
- In this chapter we study the first stage in the magnetic interaction -that is, how magnetic fields are produced by moving charges and currents.

Magnetic field of a moving charge

The magnetic field of a moving charge

- In electrostatics the electric field of a point charge was

$$
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

The magnetic field of a moving charge

- In electrostatics the electric field of a point charge was

$$
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

- This is not a separate law, but is derived from Gauss' law

$$
\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=\frac{Q_{\mathrm{enc}}}{\epsilon_{0}}
$$

$\left(E A=4 \pi r^{2}=q / \epsilon_{0}\right)$

The magnetic field of a moving charge

- Is there a similar expression for the magnetic field produced by a point charge?

The magnetic field of a moving charge

- Is there a similar expression for the magnetic field produced by a point charge?

- A moving charge generates a magnetic field that depends on the velocity of the charge.

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{q \overrightarrow{\mathbf{v}} \times \hat{\mathbf{r}}}{r^{2}} \tag{1}
\end{equation*}
$$

The magnetic field of a moving charge

- A moving charge q generates a
(a) Perspective view
magnetic field that depends on the velocity, $\overrightarrow{\mathbf{v}}$ of the charge.

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{q \overrightarrow{\mathbf{v}} \times \hat{\mathbf{r}}}{r^{2}} \tag{2}
\end{equation*}
$$

Right-hand rule for the magnetic field due to a positive charge moving at constant velocity:
Point the thumb of your right hand in the
direction of the velocity. Your fingers now curl around the charge in the direction of the magnetic field lines. (If the charge is negative, the field lines are in the opposite direction.)

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$
both lie in the beige plane, and

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$ both lie in the gold plane, and \boldsymbol{B} is perpendicular to this plane. Cosyight © 2 2008 Paarson Education, inc, publiching us Fearsan Addicon-Westiey.

The magnetic field of a moving charge

- A moving charge q generates a
(a) Perspective view
magnetic field that depends on the velocity, $\overrightarrow{\mathbf{v}}$ of the charge.

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{q \overrightarrow{\mathbf{v}} \times \hat{\mathbf{r}}}{r^{2}} \tag{2}
\end{equation*}
$$

- $\hat{\mathbf{r}}$ is a unit vector from the source point to the field point.

Right-hand rule for the magnetic field due to a positive charge moving at constant velocity:
Point the thumb of your right hand in the
direction of the velocity. Your fingers now curl around the charge in the direction of the magnetic field lines. (If the charge is negative, the field lines are in the opposite direction.)

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$
both lie in the beige plane, and

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$ both lie in the gold plane, and \boldsymbol{B} is perpendicular to this plane. Cosyight © 2 2008 Paarson Education, inc, publiching us Fearsan Addicon-Westiey.

The magnetic field of a moving charge

- A moving charge q generates a
(a) Perspective view
magnetic field that depends on the velocity, $\overrightarrow{\mathbf{v}}$ of the charge.

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{q \overrightarrow{\mathbf{v}} \times \hat{\mathbf{r}}}{r^{2}} \tag{2}
\end{equation*}
$$

- $\hat{\mathbf{r}}$ is a unit vector from the source point to the field point.

Right-hand rule for the magnetic field due to a positive charge moving at constant velocity:
Point the thumb of your right hand in the
direction of the velocity. Your fingers now curl around the charge in the direction of the magnetic field lines. (If the charge is negative, the field lines are in the opposite direction.)

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$
both lie in the beige plane, and

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$ both lie in the gold plane, and \boldsymbol{B} is perpendicular to this plane. Cosyight © 2 2008 Paarson Education, inc, publiching us Fearsan Addicon-Westiey.

The magnetic field of a moving charge

(a) Perspective view

- Magnetic permeability constant

$$
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \tag{2}
\end{equation*}
$$

- Electric and magnetic constants are related:

$$
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

where c is the speed of light.

Right-hand rule for the magnetic field due to a positive charge moving at constant velocity: Point the thumb of your right hand in the direction of the velocity. Your fingers now curl around the charge in the direction of the magnetic field lines. (If the charge is negative, the field lines are in the opposite direction.)

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$
both lie in the beige plane, and

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$ both lie in the gold plane, and \boldsymbol{B} is perpendicular to this plane. Copyight © 2008 Parson Educailon, inc, publishing as Fearsan Addicon-Weskey.

The magnetic field of a moving charge

(a) Perspective view

- Magnetic permeability constant

$$
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \tag{2}
\end{equation*}
$$

- Electric and magnetic constants are related:

$$
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

where c is the speed of light.

Right-hand rule for the magnetic field due to a positive charge moving at constant velocity: Point the thumb of your right hand in the direction of the velocity. Your fingers now curl around the charge in the direction of the magnetic field lines. (If the charge is negative, the field lines are in the opposite direction.)

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$
both lie in the beige plane, and

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{v}}$ both lie in the gold plane, and \boldsymbol{B} is perpendicular to this plane. Copyight © 2008 Parson Educailon, inc, publishing as Fearsan Addicon-Weskey.

Ex: Magnetic field of a moving charge

Question

A charge of $q=4.5 \mu \mathrm{C}$ moves with velocity $v=3 \times 10^{3} \mathrm{~m} / \mathrm{s}$. What is the magnetic field at the origin of the coordinate system when the charge is at position $x=-4 \mathrm{~m}$ and $y=3 \mathrm{~m}$.

Ex: Magnetic field of a moving charge

Solution

- $\overrightarrow{\mathbf{r}}=4 \hat{\mathbf{\imath}}-3 \hat{\mathbf{j}}, r=\sqrt{4^{2}+(-3)^{2}}=5 \mathrm{~m}$.

$$
\begin{aligned}
\hat{\mathbf{r}} & =4 / 5 \hat{\mathbf{i}}-3 / 5 \hat{\mathbf{j}}, \quad \overrightarrow{\mathbf{v}}=3 \times 10^{3} \mathrm{~m} / \mathrm{s} \hat{\mathbf{\imath}} \\
\overrightarrow{\mathbf{B}} & =\frac{\mu_{0}}{4 \pi} \frac{q \overrightarrow{\mathbf{v}} \times \hat{\mathbf{r}}}{r^{2}} \\
& =10^{-7} \frac{(4.5 \mu \mathrm{C})\left(3 \times 10^{3} \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}\right) \times(4 / 5 \hat{\mathbf{i}}}{(5 \mathrm{~m})^{2}} \\
& =-3.24 \times 10^{-11} \mathrm{~T} \hat{\mathbf{k}}
\end{aligned}
$$

where we used $\hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} \times \hat{\mathbf{1}}=0$.

Ex: Magnetic force between two positive charges

Question

Consider two positive charges moving in opposite directions in space a distance r apart at some moment in time. $F_{M} / F_{E}=$?

Ex: Magnetic force between two positive charges

Solution

E field exists (moving or not!)

$$
\overrightarrow{\mathbf{F}}_{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{\jmath}}
$$

Ex: Magnetic force between two positive charges

Solution

- Motion $\left(\overrightarrow{\mathbf{v}}_{2}=v_{2} \hat{\mathbf{1}}\right)$ of q_{2} produces

$$
\overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{q_{2} v_{2} \hat{\mathbf{\imath}} \times \hat{\mathbf{j}}}{r^{2}}, \quad \hat{\mathbf{1}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}}
$$

- Charge q_{1} is moving with $\overrightarrow{\mathbf{v}}_{1}=-v_{1} \hat{\mathbf{\imath}}$ in this magnetic field and so is acted on by the force

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{M} & =q_{1} \overrightarrow{\mathbf{v}}_{1} \times \overrightarrow{\mathbf{B}}=-q_{1} v_{1} \frac{\mu_{0}}{4 \pi} \frac{q_{2} v_{2}}{r^{2}} \hat{\mathbf{\imath}} \times \hat{\mathbf{k}} \\
& =\frac{\mu_{0}}{4 \pi} \frac{q_{1} q_{2} v_{1} v_{2}}{r^{2}} \hat{\mathbf{j}}
\end{aligned}
$$

where we used $\hat{\mathbf{\imath}} \times \hat{\mathbf{k}}=-\hat{\mathbf{j}}$.

Ex: Magnetic force between two positive charges

Solution

Bringing the results together

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{j}} \\
\overrightarrow{\mathbf{F}}_{M}=\frac{\mu_{0}}{4 \pi} \frac{q_{1} q_{2} v_{1} v_{2}}{r^{2}} \hat{\mathbf{j}} \\
\frac{F_{M}}{F_{E}}=\frac{\mu_{0}}{4 \pi} \frac{q_{1} q_{2} v_{1} v_{2}}{r^{2}} \frac{4 \pi \epsilon_{0} r^{2}}{q_{1} q_{2}} \\
=\mu_{0} \epsilon_{0} v_{1} v_{2} \\
=v_{1} v_{2} / c^{2}
\end{gathered}
$$

Magnetic force is much smaller than the electrical force.

Magnetic field of a current element

Magnetic field of a current element

(a) Perspective view

Right-hand rule for the magnetic field due to a current element: Point the thumb of your right hand in the direction of the current. Your fingers now curl around the current element in the direction of the magnetic field lines.

For these field points, \vec{r} and $d \overrightarrow{\boldsymbol{l}}$ both lie in the beige plane, and $d \overrightarrow{\boldsymbol{B}}$ is perpendicular to this

For these field points, $\dot{\vec{r}}$ and $d \overrightarrow{\boldsymbol{l}}$ both lie in the gold plane, and $d \overrightarrow{\boldsymbol{B}}$ is perpendicular to this plane.
Copyrghe 2008 Pearson Education, inc., publishing as Pearson Addson-Wesley.

- The total magnetic field of several moving charges is the vector sum of each field.
- So a current of moving charges creates a B field!

Magnetic field of a current element

(b) View along the axis of the current element

Copyright © 2008 Pearson Education, inc., oublishing as Pearson Addison-Wesley.

- The total magnetic field of several moving charges is the vector sum of each field.
- So a current of moving charges creates a B field!

Magnetic field of a current element

(a) Perspective view

Right-hand rule for the magnetic field due to a current element: Point the thumb of your right hand in the direction of the current. Your fingers now curl around the current element in the direction of the magnetic field lines.

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $d \overrightarrow{\boldsymbol{l}}$ both lie in the beige plane, and $d \overrightarrow{\boldsymbol{B}}$ is perpendicular to this

For these field points, $\overrightarrow{\boldsymbol{r}}$ and $d \overrightarrow{\boldsymbol{l}}$ both lie in the gold plane, and $d \overrightarrow{\boldsymbol{B}}$ is perpendicular to this plane. Copyrign er 2008 Fearson Education, Inc, publishing as Pearson Aaddson-Weslay

$$
\mathrm{d} \overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{~d} Q \overrightarrow{\mathbf{v}}_{d} \times \hat{\mathbf{r}}}{r^{2}}
$$

$$
\begin{equation*}
\mathrm{d} Q=n q A \mathrm{~d} \ell \tag{5}
\end{equation*}
$$

Magnetic field of a current carrying wire

$$
\mathrm{d} \overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \overrightarrow{\boldsymbol{\ell}} \times \hat{\mathbf{r}}}{r^{2}}
$$

As $\overrightarrow{\mathbf{B}}=\int \mathrm{d} \overrightarrow{\mathbf{B}}$

$$
\overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \int \frac{I \mathrm{~d} \overrightarrow{\boldsymbol{\ell}} \times \hat{\mathbf{r}}}{r^{2}}
$$

Magnetic field of a straight current carrying conductor

Magnetic field of a straight wire

$$
O \underbrace{x}_{2}
$$

$$
\begin{gathered}
\overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \int \frac{I \mathrm{~d} \overrightarrow{\boldsymbol{\ell}} \times \hat{\mathbf{r}}}{r^{2}} \\
\mathrm{~d} \overrightarrow{\boldsymbol{\ell}}=\mathrm{d} y \hat{\mathbf{\jmath}}, \overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}-y \hat{\mathbf{J}}, r=\sqrt{x^{2}+y^{2}} \\
\hat{\mathbf{r}} \equiv \frac{\overrightarrow{\mathbf{r}}}{r}=\frac{x}{r} \hat{\mathbf{l}}-\frac{y}{r} \hat{\mathbf{j}} \\
\mathrm{~d} \overrightarrow{\boldsymbol{\ell}} \times \hat{\mathbf{r}}=\mathrm{d} y \hat{\mathbf{j}} \times\left(\frac{x}{r} \hat{\mathbf{l}}-\frac{x}{r} \hat{\mathbf{j}}\right) \\
=\mathrm{d} y \hat{\mathbf{j}} \times \frac{x}{r} \hat{\mathbf{l}}=-\frac{x \mathrm{~d} y}{r} \hat{\mathbf{k}} \\
\overrightarrow{\mathbf{B}}=-\frac{\mu_{0} I}{4 \pi} \int \frac{x \mathrm{~d} y}{r^{3}} \hat{\mathbf{k}}=-\frac{\mu_{0} I x}{4 \pi} \int_{-a}^{a} \frac{\mathrm{~d} y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \hat{\mathbf{k}} \\
=-\left.\frac{\mu_{0} I x}{4 \pi} \frac{y}{x^{2} \sqrt{x^{2}+y^{2}}}\right|_{-a} ^{a} \hat{\mathbf{k}}=-\frac{\mu_{0} I}{2 \pi x} \frac{a}{\sqrt{a^{2}+x^{2}}} \hat{\mathbf{k}}
\end{gathered}
$$

\uparrow At point P, the field $d \overrightarrow{\boldsymbol{B}}$
I caused by each element of the conductor points into the plane of the page, as does the total $\overrightarrow{\boldsymbol{B}}$ field.

Magnetic field of an infinitely long straight wire

\uparrow At point P, the field $d \overrightarrow{\boldsymbol{B}}$
I caused by each element of the conductor points into the plane of the page, as does the total $\overrightarrow{\boldsymbol{B}}$ field.

So we found

$$
\overrightarrow{\mathbf{B}}=-\frac{\mu_{0} I}{2 \pi x} \frac{a}{\sqrt{a^{2}+x^{2}}} \hat{\mathbf{k}}
$$

for the wire lying between $-a$ and a.
If the wire is infinitely long $(a \rightarrow \infty)$
we obtain

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=-\frac{\mu_{0} I}{2 \pi x} \hat{\mathbf{k}} \tag{7}
\end{equation*}
$$

This is a good approximation for the field of a wire with $a \gg x$.

Direction of the magnetic field of a straight wire

Right-hand rule for the magnetic field around a current-carrying wire: Point the thumb of your right hand in the direction of the current. Your fingers now curl around the wire in the direction of the magnetic field lines.

At a distance r from the wire the magnitude of the field is

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 \pi r} \tag{8}
\end{equation*}
$$

and the direction is determined by the RHR.

Direction of the magnetic field of a straight wire

At a distance r from the wire the magnitude of the field is

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 \pi r} \tag{8}
\end{equation*}
$$

and the direction is determined by the RHR.

Direction of the magnetic field of a straight wire

At a distance r from the wire the magnitude of the field is

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 \pi r} \tag{8}
\end{equation*}
$$

and the direction is determined by the RHR.

Ex: Field of a long wire

Question

A long wire carries a current of 10 A .
(a) What is the magnetic field at a distance 1 cm ?
(b) Is it hazardeous for living organisms?

Ex: Field of a long wire

Question

A long wire carries a current of 10 A .
(a) What is the magnetic field at a distance 1 cm ?
(b) Is it hazardeous for living organisms?

Answer (a)
$I=10 \mathrm{~A}$ and $r=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$

$$
\begin{aligned}
B & =\frac{\mu_{0} I}{2 \pi r}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right) \times 10 \mathrm{~A}}{2 \pi \times 10^{-2} \mathrm{~m}} \\
& =2 \times 10^{-4} \mathrm{~T}
\end{aligned}
$$

Ex: Field of a long wire

Question

A long wire carries a current of 10 A .
(a) What is the magnetic field at a distance 1 cm ?
(b) Is it hazardeous for living organisms?

Answer (b)

In order to decide whether a magnetic field of $2 \times 10^{-4} \mathrm{~T}$ is hazardeous for living organisms we should compare it with some other fields humans are exposed to.
The Earth has a magnetic field of $B_{\oplus} \simeq 0.5 \times 10^{-4} \mathrm{~T}$ to which all living organisms on Earth a subjected to since at least a billion years! We are usually more than 1 cm away from such wires. Note also that a patient in an MRI device is exposed to about 1 T which also is not found to be hazardous.

Ex: Magnetic field of two wires

Question

Two long, straight, parallel wires perpendicular to the $x y$-plane are seperated by a distance $2 d$. Each wire carries a current I but in opposite directions. Find $\overrightarrow{\mathbf{B}}$ at points P_{1}, P_{2} and P_{3}.

End-on view of the two-wire system described in the question.

Ex: Magnetic field of two wires

Solution

The fields support each other in the region between the wires and partially cancel each other on the left of the first wire and right of the second wire.

Map of the magnetic field produced by the two conductors. The field lines are closest together between the conductors, where the field is strongest.

Ex: Magnetic field of two wires

$$
\begin{aligned}
& \begin{array}{l}
\text { Solution } \\
\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}_{1}+\overrightarrow{\mathbf{B}}_{2} \\
\overrightarrow{\mathbf{B}}=-\frac{\mu_{0} I}{2 \pi(2 d)} \hat{\mathbf{j}}+\frac{\mu_{0} I}{2 \pi(4 d)} \hat{\mathbf{j}} \quad \text { At } P_{1} \\
\overrightarrow{\mathbf{B}}=+\frac{\mu_{0} I}{2 \pi(d)} \hat{\mathbf{\jmath}}+\frac{\mu_{0} I}{2 \pi(d)} \hat{\mathbf{\jmath}} \\
\overrightarrow{\mathbf{B}}=+\frac{\mu_{0} I}{2 \pi(3 d)} \hat{\mathbf{\jmath}}-\frac{\mu_{0} I}{2 \pi(d)} \hat{\mathbf{\jmath}}
\end{array} \text { At } P_{3}
\end{aligned}
$$

Ex: Magnetic field of two wires

Question

Two long, straight, parallel wires perpendicular to the $x y$-plane are seperated by a distance $2 d$. Each wire carries a current I both in the $+z$-direction. Find $\overrightarrow{\mathbf{B}}$ at point P on the y-axis.

Ex: Magnetic field of two wires

Solution

The magnitudes are the same.

$$
B_{R}=B_{L}=\frac{\mu_{0} I}{2 \pi R}
$$

The y-components will cancel each other. Only the x-components will prevail and add-up:

$$
B=2 B_{R} \cos \theta, \quad \overrightarrow{\mathbf{B}}=-2 B_{R} \cos \theta \hat{\mathbf{l}}
$$

where
$\cos \theta=\sqrt{R^{2}-d^{2}} / R=\sqrt{1-d^{2} / R^{2}}$

Ex: Magnetic field of current segment

This is a calculation for a general position relative to the current segment but we will be using it for highly symmetric situatiuons.

Ex: Magnetic field of current segment

Show that the $\overrightarrow{\mathbf{B}}$ at point P is

$$
\overrightarrow{\mathbf{B}}=\frac{\mu_{0} I}{4 \pi R}\left(\sin \theta_{2}-\sin \theta_{1}\right) \hat{\mathbf{k}}
$$

Ex: Magnetic field of current segment

Show that the $\overrightarrow{\mathbf{B}}$ at point P is

$$
\overrightarrow{\mathbf{B}}=\frac{\mu_{0} I}{4 \pi R}\left(\sin \theta_{2}-\sin \theta_{1}\right) \hat{\mathbf{k}}
$$

For an infinitely long wire

$$
\begin{aligned}
& \theta_{1}=-\pi / 2 \& \theta_{2}=+\pi / 2 \\
& \qquad \overrightarrow{\mathbf{B}}=\frac{\mu_{0} I}{4 \pi R}[1-(-1)] \hat{\mathbf{k}}=\frac{\mu_{0} I}{2 \pi R} \hat{\mathbf{k}} \\
& \text { which is what we obtained before. }
\end{aligned}
$$

Ex: Magnetic field at the center of a square loop

What is the magnetic field at the center of the loop?

Ex: Magnetic field at the center of a square loop

Note that $\theta_{1}=-\pi / 4$ and $\theta_{2}=+\pi / 4$
 and $R=L / 2$. For one segment

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{1} & =\frac{\mu_{0} I}{4 \pi R}\left(\sin \theta_{2}-\sin \theta_{1}\right) \hat{\mathbf{k}} \\
& =\frac{\mu_{0} I}{2 \pi L}\left[\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{2}}{2}\right)\right] \hat{\mathbf{k}} \\
& =\frac{\sqrt{2} \mu_{0} I}{2 \pi L} \hat{\mathbf{k}}
\end{aligned}
$$

Ex: Magnetic field at the center of a square loop

Note that $\theta_{1}=-\pi / 4$ and $\theta_{2}=+\pi / 4$ and $R=L / 2$. For one segment

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{1} & =\frac{\mu_{0} I}{4 \pi R}\left(\sin \theta_{2}-\sin \theta_{1}\right) \hat{\mathbf{k}} \\
& =\frac{\mu_{0} I}{2 \pi L}\left[\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{2}}{2}\right)\right] \hat{\mathbf{k}} \\
& =\frac{\sqrt{2} \mu_{0} I}{2 \pi L} \hat{\mathbf{k}}
\end{aligned}
$$

Each segment makes an identical contribution

$$
\overrightarrow{\mathbf{B}}=4 \overrightarrow{\mathbf{B}}_{1}=\frac{2 \sqrt{2} \mu_{0} I}{\pi L} \hat{\mathbf{k}}
$$

Force between parallel conductors

Force between parallel conductors

- The lower conductor produces a $\overrightarrow{\mathbf{B}}$ field that, at the position of the upper conductor has magnitude

The magnetic field of the lower wire exerts an attractive force on the upper wire. By the same token, the upper wire attracts the lower one.

If the wires had currents in opposite directions, they would repel each other.

- The force that this field exerts on a length L of the upper conductor is $\overrightarrow{\mathbf{F}}=I^{\prime} \vec{\ell} \times \overrightarrow{\mathbf{B}}$. Thus

$$
\begin{equation*}
F=I^{\prime} L B=\frac{\mu_{0} I I^{\prime} L}{2 \pi r} \tag{9}
\end{equation*}
$$

- The force per unit length on each conductor is

$$
\frac{F}{L}=\frac{\mu_{0} I I^{\prime}}{2 \pi r}
$$

Force between parallel conductors

- The conductors attract each other if the currents are in the same direction and repel if they are in opposite directions.

Question

What force does each wire exert on the other?

Solution

Question

What force does each wire exert on the other?

Solution

$$
\begin{aligned}
\frac{F}{L} & =\frac{\mu_{0} I I^{\prime}}{2 \pi r} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(1.5 \times 10^{4} \mathrm{~A}\right)^{2}}{2 \pi \times 4.5 \times 10^{-3} \mathrm{~m}} \\
& =1 \times 10^{4} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Magnetic field of a circular current loop

Magnetic field of curved segment

Queston

What is the magnetic field at the center of the curved segment?

Magnetic field of curved segment

Soluton

- $\mathrm{d} \overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \vec{\ell} \times \hat{\mathbf{r}}}{r^{2}}$
- $\mathrm{d} \overrightarrow{\boldsymbol{\ell}} \perp \hat{\mathbf{r}}$

$$
\mathrm{d} B=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \ell|\hat{\boldsymbol{r}}| \hat{\sin }^{1} 90^{\circ} 1}{r^{2}}
$$

- $\mathrm{d} \ell=R \mathrm{~d} \alpha, r=R$
- $\mathrm{d} B=\frac{\mu_{0} I}{4 \pi} \frac{R \mathrm{~d} \alpha}{R^{2}}$
- $B=\frac{\mu_{0} I}{4 \pi R} \int_{0}^{\theta} \mathrm{d} \alpha$

$$
B=\frac{\mu_{0} I}{4 \pi R} \theta
$$

Magnetic field of curved segment

Curved segment

$$
B=\frac{\mu_{0} I}{4 \pi R} \theta
$$

Full circle

$$
B=\frac{\mu_{0} I(2 \pi)}{4 \pi R}=\frac{\mu_{0} I}{2 R}
$$

Ex: A loop

Question

Calculate the magnetic field (magnitude and direction) at a point P due to a current $I=12.0 \mathrm{~A}$ in the wire shown in Figure. Segment BC is an arc of a circle with radius $R_{2}=30.0 \mathrm{~cm}$, and point P is at the center of curvature of the arc. Segment DA is an arc of a circle with radius $R_{1}=20.0 \mathrm{~cm}$, and point P is at its center of curvature. Segments CD and AB are straight lines of length 10.0 cm each.

Ex: A loop

Solution

$\theta=120^{\circ}=2 \pi / 3$ radians
$B=\frac{\mu_{0} I \theta}{4 \pi R}=\frac{\mu_{0} I}{6 R} \quad$ Single segment of radius R
$\overrightarrow{\mathbf{B}}=\frac{\mu_{0} I}{6 R_{1}} \otimes+\frac{\mu_{0} I}{6 R_{2}} \odot$

$$
=\frac{\mu_{0} I}{6}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

$$
=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(12.0 \mathrm{~A})}{6}\left(\frac{1}{0.2 \mathrm{~m}}-\frac{1}{0.3 \mathrm{~m}}\right)
$$

$$
\simeq 4 \times 10^{-6} \mathrm{~T} \otimes
$$

Magnetic field of a circular current loop

$$
r=\sqrt{a^{2}+x^{2}}
$$

$$
\cos \theta=a / r
$$

Question

- Use Biot-Savart Law to find field a distance x away on axis from a coil with current I.
- The result should give $B=\mu_{0} I / 2 a$ for $x=0$.

Magnetic field of a circular current loop

Solution

- $\hat{\mathbf{r}}=\overrightarrow{\mathbf{r}} / r$

$$
\mathrm{d} \overrightarrow{\mathbf{B}}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \overrightarrow{\boldsymbol{\ell}} \times \hat{\boldsymbol{r}}}{r^{2}}
$$

- $\mathrm{d} \overrightarrow{\boldsymbol{\ell}} \perp \hat{\mathbf{r}}$,

$$
\mathrm{d} B=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \ell|\hat{\boldsymbol{r}}| \sin 90^{-1}}{r^{2}}
$$

- $\mathrm{d} B_{x}=\mathrm{d} B \cos \theta$

$$
\mathrm{d} B_{x}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \ell \cos \theta}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \ell a}{r^{3}}{ }_{29}
$$

Magnetic field of a circular current loop

Solution

- We found

$$
\mathrm{d} B_{x}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \ell a}{r^{3}}
$$

- Integrate

$$
\begin{aligned}
B_{x} & =\frac{\mu_{0} I a}{4 \pi r^{3}} \int \ell^{2 \pi a} \\
& =\frac{\mu_{0} I a^{2}}{2 r^{3}} \\
& =\frac{\mu_{0}}{2} \frac{I a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}
\end{aligned}
$$

Magnetic field of a circular current loop

Solution

$$
\begin{aligned}
& r=\sqrt{a^{2}+x^{2}} \\
& \cos \theta=a / r
\end{aligned}
$$

- We found

$$
B_{x}=\frac{\mu_{0}}{2} \frac{I a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

- For $x=0$ this simplifies to

$$
B_{x}=\frac{\mu_{0}}{2} \frac{I a^{2}}{a^{3}}=\frac{\mu_{0} I}{2 a}
$$

matching the field we found at the center of a circular loop.

Magnetic field of a circular current loop

Result in terms of μ

- We found

$$
B_{x}=\frac{\mu_{0}}{2} \frac{I a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

- Recall $\mu=I A=I \pi a^{2}$ is the magnetic moment

$$
B_{x}=\frac{\mu_{0}}{2 \pi} \frac{\mu}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

- If $x \gg a$

$$
B_{x}=\frac{\mu_{0}}{2 \pi} \frac{\mu}{|x|^{3}}
$$

Magnetic field of a circular current loop

Field of a coil

- If there are N turns in the loop

$$
B_{x}=\frac{\mu_{0}}{2} \frac{N I a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

- Recall $\mu=N I A=N I \pi a^{2}$ is the magnetic moment

$$
B_{x}=\frac{\mu_{0}}{2 \pi} \frac{\mu}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

remains unchanged

- If $x \gg a$

$$
B_{x}=\frac{\mu_{0}}{2 \pi} \frac{\mu}{|x|^{3}}
$$

Magnetic field of a circular current loop

Direction of the field

Direction of field using right-hand rule.

Direction of the field

Magnetic field lines produced by the current in a circular loop. At points on the axis, the $\overrightarrow{\mathbf{B}}$ field has the same direction as $\overrightarrow{\boldsymbol{\mu}}$ of the loop.

Direction of the field

Magnetic field lines produced by the current in a circular loop. At points on the axis, the $\overrightarrow{\mathbf{B}}$ field has the same direction as $\overrightarrow{\boldsymbol{\mu}}$ of the loop.

(a)

(b)

Magnetic field of two closely spaced rings

With the addition of a second current loop the magnetic field becomes more uniform in the near the center of the loops.

Magnetic field of many closely spaced rings

With the addition of further current loops the magnetic field becomes more uniform near the center of the loops.

Solenoid

A circuit element with $N=$ thousands of closely spaced turns (windings), each of which can be regarded as a circular loop carrying te same current.

Solenoid

Current Loops

(a)

Bar Magnet

(b)

The fields are similar but you can't get access to the internal region of the bar magnet.

Solenoid

Exact calculations show that for a long, closely wound solenoid, half of these field lines emerge from the ends and half "leak out" through the windings between the center and the end, as the figure suggests. Here $n=N / L$

Solenoid

$z_{2}-z_{1}=L, n=N / L$. In length
$\mathrm{d} z$ there are $n \mathrm{~d} z$ turns each with current I :

$$
\mathrm{d} i=\operatorname{In} \mathrm{d} z
$$

Recall that for a circular loop of radius a, current I we habe obtained the field as

$$
B_{x}=\frac{\mu_{0}}{2} \frac{I a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

Replace $I \rightarrow \mathrm{~d} i, a \rightarrow R, x \rightarrow z$

$$
\mathrm{d} B_{z}=\frac{\mu_{0}}{2} \frac{\mathrm{~d} i R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}}
$$

Integrating this from z_{1} to z_{2}
$B_{z}=\frac{\mu_{0}}{2} n I\left(\frac{z_{2}}{\sqrt{R^{2}+z_{2}^{2}}}-\frac{z_{1}}{\sqrt{R^{2}+z_{1}^{2}}}\right)$

(Field at the center $z=0$)

Solenoid

Let us add some symmetry by choosing $z_{1}=-L / 2$ and $z_{2}=L / 2$

$$
\begin{aligned}
B_{z} & =\frac{\mu_{0}}{2} n I\left(\frac{z_{2}}{\sqrt{R^{2}+z_{2}^{2}}}-\frac{z_{1}}{\sqrt{R^{2}+z_{1}^{2}}}\right) \\
& =\frac{\mu_{0}}{2} n I\left(\frac{L / 2}{\sqrt{R^{2}+(L / 2)^{2}}}-\frac{-L / 2}{\sqrt{R^{2}+(-L / 2)^{2}}}\right) \\
& =\frac{\mu_{0}}{2} n I\left(\frac{L}{\sqrt{R^{2}+(L / 2)^{2}}}\right)
\end{aligned}
$$

Ideal solenoid limit

Ideal solenoid $(L \gg R)$ assumption simplifies further

$$
\begin{aligned}
B_{z} & =\frac{\mu_{0}}{2} n I\left(\frac{L}{\sqrt{R^{2^{4^{0}}+(L / 2)^{2}}}}\right) \\
& =\frac{\mu_{0}}{2} n I\left(\frac{L}{L / 2}\right) \\
& =\mu_{0} n I
\end{aligned}
$$

We later will derive this from Ampere's law.

Ex: Field produced by a rotating disc of charge

Question

A thin dielectric disk with radius a has a total charge $+Q$ distributed uniformly over its surface. It rotates with angular velocity ω about an axis perpendicular to the surface of the disk and passing through its center. (a) Find the magnetic field at the center of the disk.
(b) Find the magnetic field at a distance x along the rotation axis.

Ex: Field produced by a rotating disc of charge

Solution (a)

- We have found the magnetic field at the center of a ring of radius r carrying current I as $B=\mu_{0} I / 2 r$
- If the total charge is $+Q$ the surface charge density is $\sigma=Q / \pi a^{2}$
- A ring with radius r and thickness $\mathrm{d} r$ has area $\mathrm{d} A=2 \pi r \mathrm{~d} r$ and hence its charge is

$$
\mathrm{d} q=\sigma \mathrm{d} A=\frac{Q}{\nexists a^{2}} 2 \not \not t r \mathrm{~d} r
$$

- The period of rotation is $T=2 \pi / \omega$ and the current corresponding of the rotation of the ring is then $\mathrm{d} I=\mathrm{d} q / T$

$$
\mathrm{d} I=\frac{Q \omega}{\pi a^{2}} r \mathrm{~d} r
$$

Ex: Field produced by a rotating disc of charge

- The field due to current $\mathrm{d} I$ is then
$\mathrm{d} B=\mu_{0} \mathrm{~d} I / 2 r$

$$
\mathrm{d} B=\frac{\mu_{0} Q \omega}{2 \pi a^{2}} \mathrm{~d} r
$$

- Integration gives

$$
B=\frac{\mu_{0} Q \omega}{2 \pi a^{2}} \int_{0}^{a} \mathrm{~d} r=\frac{\mu_{0} Q \omega}{2 \pi a}
$$

- Recall the magnetic moment of the disc is $\mu=\frac{1}{4} Q a^{2} \omega$. Then

$$
B=\frac{2 \mu_{0} \mu}{\pi a^{3}}
$$

Ex: Field produced by a rotating disc of charge

Solution (b)

- For a ring of radius a with current I we have found

$$
B=\frac{\mu_{0}}{2} \frac{I a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

- For radius r and current $\mathrm{d} I=\frac{Q \omega}{\pi a^{2}} r \mathrm{~d} r$

$$
\mathrm{d} B=\frac{\mu_{0}}{2} \frac{\mathrm{~d} I r^{2}}{\left(r^{2}+x^{2}\right)^{3 / 2}}
$$

- Thus integration gives

$$
\begin{aligned}
B & =\frac{\mu_{0} Q \omega}{2 \pi a^{2}} \int_{0}^{a} \frac{r^{3} \mathrm{~d} r}{\left(r^{2}+x^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0} Q \omega}{2 \pi a^{2}}\left(\frac{a^{2}+2 x^{2}}{\sqrt{a^{2}+x^{2}}}-2 x\right)
\end{aligned}
$$

$$
\int \frac{r^{3} \mathrm{~d} r}{\left(r^{2}+x^{2}\right)^{3 / 2}}=\frac{r^{2}+2 x^{2}}{\sqrt{r^{2}+x^{2}}}+C
$$

see https://www.
integral-calculator.com/

Ampere's law

Ampere's law

Line integral around a closed path
Magnetic constant

- Suppose several long, straight conductors pass through surface bounded by closed loop path.
- The line integral of total magnetic field is proportional to algebraic sum of currents.

Ampere's law

Top view

Ampere's law: If we calculate the line integral of the magnetic field around a closed curve, the result equals μ_{0} times the total enclosed current: $\oint \vec{B} \cdot \overrightarrow{\boldsymbol{l}}=\mu_{0} I_{\text {encl }}$
Copyright e2008 Pearson Education, Inc., publishing as Pearson Adcison-Wesley.

Line integral around a closed path
Magnetic constant
$\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{0} I_{\mathrm{encl}} \quad$ enclosed by path
Scalar product of magnetic field and vector segment of path

- $I_{\text {enc }}=$ algebraic sum of currents enclosed or linked by integration path
- Evaluate by using right- hand sign rule.

Ampere's law

Line integral around a closed path
Magnetic constant

Top view

Ampere's law: If we calculate the line integral of the magnetic field around a closed curve, the result equals μ_{0} times the total enclosed current: $\oint \vec{B} \cdot d \boldsymbol{l}=\mu_{0} I_{\text {encl }}$
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$
\begin{aligned}
& \oint_{\overrightarrow{\boldsymbol{B}}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{0} I_{\mathrm{encl}} \quad \text { enclosed by path } \\
& \text { Scalar product of magnetic field } \\
& \text { and vector segment of path }
\end{aligned}
$$

- Valid for conductors \& paths of any shape.
- If integral around closed path is zero...
- does not necessarily mean that B field is zero everywhere
- only that total current through an area bounded by path is zero.

Field of a infinitely long straight wire

- Ampere's law relates electric current to line integral around a closed path.
(a) Integration path is a circle centered on the conductor; integration goes around the circle counterclockwise.

$$
\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\oint B \mathrm{~d} l=B \oint \mathrm{~d} l=B 2 \pi r
$$

Result: $\oint \overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{d \boldsymbol{l}}=\mu_{0} I$

- $I_{\text {enc }}=I$

$$
\begin{aligned}
\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}} & =\mu_{0} I_{\mathrm{enc}} \Rightarrow B 2 \pi r=\mu_{0} I \\
& \Rightarrow B=\frac{\mu_{0} I}{2 \pi r}
\end{aligned}
$$

(same with the result we obtained with Biot-Savart's law.)

Ampere's law for a circular path around a long straight conductor

(a) Integration path is a circle centered on the conductor; integration goes around the circle counterclockwise.

Result: $\oint \vec{B} \cdot \vec{d}=\mu_{0} I$

(b) Same integration path as in (a), but integration goes around the circle clockwise.

Result: $\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=-\mu_{0} I$

(c) An integration path that does not enclose the conductor.

Result: $\oint \boldsymbol{B} \cdot \boldsymbol{d} \boldsymbol{l}=0$

Ampere's law for a general path around a long straight conductor
(a)

$\overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=B \mathrm{~d} l \cos \phi \& \mathrm{~d} l \cos \phi=r \mathrm{~d} \theta$
(b)

Ampere's law for a general path around a long straight conductor
(a)

$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\oint \frac{\mu_{0} I}{2 \pi r} r \mathrm{~d} \theta=\frac{\mu_{0} I}{2 \pi} \oint \mathrm{~d} \theta$
(b)

Ampere's law for a general path around a long straight conductor
(a)

(b)

$\oint \mathrm{d} \theta$ is the net change in θ during the trip around the integration path

Ampere's law for a general path around a long straight conductor
(a)
(b)

$\oint \mathrm{d} \theta=2 \pi$ if I is inside the loop (Fig a) and $\oint \mathrm{d} \theta=0$ if I is outside the loop (Fig b)

Applications of Ampere's law

Field of a long cylindrical conductor

Question

- Cylindrical conductor with radius R carries current I.
- Current is uniformly distributed over cross-sectional area of conductor.
- $B=$? everywhere.

$$
B= \begin{cases}? & \text { for } r<R \\ ? & \text { for } r>R\end{cases}
$$

Field of a long cylindrical conductor

Answer: For $r>R$

$$
\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\oint B \mathrm{~d} l=B \oint \mathrm{~d} l=B 2 \pi r
$$

- $I_{\text {enc }}=I$

$$
\begin{aligned}
& \oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\mu_{0} I_{\mathrm{enc}} \Rightarrow B 2 \pi r=\mu_{0} I \\
& \Rightarrow B=\frac{\mu_{0} I}{2 \pi r} \text { for } r>R
\end{aligned}
$$

(same with the result we obtained foir the straight wire)

Field of a long cylindrical conductor

Answer: For $r<R$

$$
\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\oint B \mathrm{~d} l=B \oint \mathrm{~d} l=B 2 \pi r
$$

- $I_{\mathrm{enc}}=I\left(\pi r^{2} / \pi R^{2}\right)$
$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\mu_{0} I_{\mathrm{enc}} \Rightarrow B 2 \pi r=\mu_{0} I \frac{r^{2}}{R^{2}}$

$$
\Rightarrow B=\frac{\mu_{0} I}{2 \pi R^{2}} r \text { for } r<R
$$

(increases linearly)

Field of a long cylindrical conductor

Answer: both

$$
B= \begin{cases}\frac{\mu_{0} I}{22 R^{2}} r & \text { for } r<R \\ \frac{\mu_{0} I}{2 \pi r} & \text { for } r>R\end{cases}
$$

Field of an ideal solenoid

A solenoid consists of a helical winding of wire on a cylinder.

Field of an ideal solenoid

Field depends on \# of turns per meter (n) and current I

Field of an ideal solenoid

$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=B L$

Field of an ideal solenoid

$$
\begin{aligned}
& \oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=B L \\
& I_{\mathrm{enc}}=n L I
\end{aligned}
$$

Field of an ideal solenoid

$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \mathbf{l}=B L$
$I_{\mathrm{enc}}=n L I$
$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\mu_{0} I_{\mathrm{enc}} \Rightarrow B L=\mu_{0} n L I \Rightarrow B=\mu_{0} n I$

Field of an toroidal solenoid

(a)

The magnetic field is confined almost entirely to the space enclosed by the windings (in blue).

A doughnut-shaped toroidal solenoid, tightly wound with N turns of wire carrying a current I.

Field of an toroidal solenoid

The magnetic field is confined almost entirely to the space enclosed by the windings (in blue).
$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=B 2 \pi r$

Field of an toroidal solenoid

The magnetic field is confined almost entirely to the space enclosed by the windings (in blue).
$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=B 2 \pi r$
$I_{\mathrm{enc}}=N I$

Field of an toroidal solenoid

(a)

The magnetic field is confined almost entirely to the space enclosed by the windings (in blue).
$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=B 2 \pi r$
$I_{\text {enc }}=N I$
$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{l}}=\mu_{0} I_{\text {enc }} \Rightarrow B=\frac{\mu_{0} N I}{2 \pi r}$

Gauss' law for magnetism

Gauss' law for magnetism

$\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=Q_{\text {enc }} / \epsilon_{0}$

$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=0$

The geometry in this case is similar (dipolar) except between the charges.

Gauss' law for magnetism

$\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=Q_{\mathrm{enc}} / \epsilon_{0}$

$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \overrightarrow{\mathbf{A}}=0$

Electric field lines start from the positive charge and terminate on the negative one.

Gauss' law for magnetism

Magnetic field lines are continuous. No magnetic monopoles!

Magnetic materials

Magnetic materials

- We said that all magnetic fields arise from moving charges.
(b) View along the axis of the current element

Magnetic materials

- We said that all magnetic fields arise from movino sharoes
- Are there really moving charges in permanent magnets?

Magnetic materials

- We said that all magnetic fields arise from moving sharoes.
- Are there really moving charges in permanent magnets?
- Why do we use iron cores in coils of transformers?

The Bohr Magneton

- The atoms that make up all matter contain moving $\mathrm{e}^{-} \mathrm{s}$, and these $\mathrm{e}^{-} \mathrm{s}$ form microscopic current loops that produce B fields of their own.
- $\mu=I A$ where $A=\pi r^{2}$
- The orbital period $T=2 \pi r / v$
- The equivalent current I is the total charge passing any point on the orbit per unit time: $I=\frac{e}{T}=\frac{e v}{2 \pi r}$
- Thus the magnetic moment is

$$
\mu=\frac{e v}{2 \pi r} \pi r^{2}=\frac{1}{2} e v r
$$

An e^{-}moving with $\overrightarrow{\mathbf{v}}$ in a circular orbit of radius r has an
angular momentum $\overrightarrow{\mathbf{L}}$ and an oppositely directed orbital magnetic dipole moment $\vec{\mu}$.

The Bohr Magneton

- Using $L=m v r$ in $\mu=\frac{1}{2} e v r$

$$
\mu=\frac{e}{2 m} L
$$

- According to QM angular momentum is quantized in multiples of $h / 2 \pi$ where
$h=6.62607015 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
is the Planck's constant.
- The unit of magnetic moment thus becomes (by $L \rightarrow h / 2 \pi$)

$$
\mu_{\mathrm{B}}=\frac{e}{2 m} \frac{h}{2 \pi}=9.274 \times 10^{-24} \mathrm{~A} \cdot \mathrm{~m}^{2}
$$

An e^{-}moving with $\overrightarrow{\mathbf{v}}$ in a circular orbit of radius r has an angular momentum $\overrightarrow{\mathbf{L}}$ and an oppositely directed orbital magnetic dipole moment $\overrightarrow{\boldsymbol{\mu}}$.

Spin angular momentum and magnetic moment

Electron spin explained: imagine a ball that's rotating, except it's not a ball and it's not rotating

- Electrons also have an intrinsic angular momentum, called spin
- The spin angular momentum also has an associated magnetic moment, and its magnitude turns out to be almost exactly one Bohr magneton.

It also has a spin angular momentum and an oppositely directed spin magnetic dipole moment.

Magnetization

- In many materials these magnetic moments are randomly oriented and cause no net magnetic field.
- But in some materials an external
field can cause the magnetic
momenta to become oriented preferentially with the field $(\vec{\tau}=\vec{\mu} \times \overrightarrow{\mathbf{B}})$, so their magnetic

Unmagnetized

Magnetization

moments are randomly oriented

and causc 110 not magnotic fold.

- But in some materials an external field can cause the magnetic moments to become oriented preferentially with the field $(\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\boldsymbol{\mu}} \times \overrightarrow{\mathbf{B}})$, so their magnetic fields add to the external field.

Magnetization

moments are randomly oriented

- classes of magnetic behavior
- paramagnetism
- diamagnetism
- ferromagnetism
to be read from the book.

Magnetization

- the $\overrightarrow{\mathbf{B}}$ field produced by a current loop is proportional to the loop's $\overrightarrow{\boldsymbol{\mu}}$.
- The additional B field produced by microscopic electron current loops is proportional to $\overrightarrow{\boldsymbol{\mu}}_{\text {tot }}$ total per unit volume V in the material.
- We call this vector quantity the magnetization of the material $\overrightarrow{\mathbf{M}}=\overrightarrow{\boldsymbol{\mu}}_{\mathrm{tot}} / V$

Magnetic permeability and susceptibility

- The additional magnetic field due to magnetization of the material turns out to be equal simply to $\mu_{0} \overrightarrow{\mathbf{M}}$:

$$
\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}_{0}+\mu_{0} \overrightarrow{\mathbf{M}}
$$

- The result is that the magnetic field at any point in such a material is greater by a dimensionless factor K_{m}, called the relative permeability of the material, than it would be if the material were replaced by vacuum:

$$
\mu=K_{m} \mu_{0}
$$

- The amount by which the relative permeability differs from unity is called the magnetic susceptibility

$$
\chi_{m}=K_{m}-1
$$

Paramagnetism

- Materials having the behavior just described is said to be paramagnetic.
- Paramagnetic materials having K_{m} values slightly greater than 1.
- Ex: Aluminum has $K_{m}=1.000022$ and so $\chi_{m}=2.2 \times 10^{-5}$.

In presence of external magnetic field
†1 111
†1†1 1

- You can hardly notice
paramagnetism in your daily life since it is a weak effect. See Youtube link

Diamagnetism

- In some materials $\overrightarrow{\boldsymbol{\mu}}_{\text {tot }}$ of all the atomic current loops is zero when no B is present.
- But even these materials have magnetic effects because an external B alters e^{-}motions within the atoms, causing additional current loops and induced magnetic dipoles.
- In this case the additional B caused by
 these current loops is always opposite in direction to that of the external B.
- Such diamagnetic materials always have $\chi_{m}<0$ and K_{m} slightly less than unity.

Magnetic Susceptibilities of Paramagnetic and Diamagnetic Materials

Table 28.1 Magnetic Susceptibilities of Paramagnetic and Diamagnetic Materials at $T=20^{\circ} \mathrm{C}$	
Material	$\chi_{\mathrm{m}}=K_{\mathrm{m}}-1\left(\times \mathbf{1 0}^{-5}\right)$
Paramagnetic	
Iron ammonium alum	66
Uranium	40
Platinum	26
Aluminum	2.2
Sodium	0.72
Oxygen gas	0.19
Diamagnetic	
Bismuth	-16.6
Mercury	-2.9
Silver	-2.6
Carbon (diamond)	-2.1
Lead	-1.8
Sodium chloride	-1.4
Copper	-1.0

Ferromagnetism

- Includes iron, nickel, cobalt, and many alloys containing these elements.
- Strong interactions between atomic magnetic moments cause them to line up parallel to each other in regions called magnetic domains, even when no external B is present.

- Within each domain, nearly all of the atomic magnetic moments are parallel.
- $K_{m} \gg 1$, typically of the order of 1000 to 100,000 .

Summary

