Name:

Number:

1. Write the definition of a measure on a set X.

Solution: A measure is a partial function $\mu: 2^{X} \rightarrow[0, \infty) \cup\{\infty\}$ which is countably additive, i.e. if $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ is a countable family of sets such that $E_{n} \cap E_{m}=\emptyset$ whenever $n \neq m$ then we have

$$
\mu\left(\bigcup_{n=0}^{\infty} E_{n}\right)=\sum_{n=0}^{\infty} \mu\left(E_{n}\right)
$$

2. Assume we defined a decreasing chain of subsets $C_{n} \supset C_{n+1}$ in \mathbb{R} recursively:

$$
C_{0}=[0,1] \quad \text { and } \quad C_{n+1}=\frac{1}{4} C_{n} \cup\left(\frac{3}{4}+\frac{1}{4} C_{n}\right)
$$

(a) Write the first 3 terms: C_{0}, C_{1} and C_{2}.

Solution: We already have $C_{0}=[0,1]$. For C_{1} we apply the recursive formula. We have two parts $\frac{1}{4}[0,1]=\left[0, \frac{1}{4}\right]$, and $\frac{3}{4}+\frac{1}{4}[0,1]=\left[\frac{3}{4}, 1\right]$. Notice that the second part is the first part shifted to the right by $\frac{1}{4}$. So,

$$
C_{1}=\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, 1\right]
$$

Applying the recursive formula, we again get two parts. For the first part we have

$$
\frac{1}{4}\left[0, \frac{1}{4}\right] \cup \frac{1}{4}\left[\frac{3}{4}, 1\right]=\left[0, \frac{1}{16}\right] \cup\left[\frac{3}{16}, \frac{1}{4}\right]
$$

For the second part, we get this first part and shift to right by $\frac{3}{4}$.

$$
\left(\frac{3}{4}+\left[0, \frac{1}{16}\right]\right) \cup\left(\frac{3}{4}+\left[\frac{3}{16}, \frac{1}{4}\right]\right)=\left[\frac{12}{16}, \frac{13}{16}\right] \cup\left[\frac{15}{16}, 1\right]
$$

Combining these parts we get

$$
C_{2}=\left[0, \frac{1}{16}\right] \cup\left[\frac{3}{16}, \frac{1}{4}\right] \cup\left[\frac{12}{16}, \frac{13}{16}\right] \cup\left[\frac{15}{16}, 1\right]
$$

(b) Calculate the measure of C_{n+1} in terms of the measure of C_{n}.

Solution: The recursive formula indicates $C_{n+1}=\frac{1}{4} C_{n} \cup\left(\frac{3}{4}+\frac{1}{4} C_{n}\right)$. We have seen in the class that $\mu(\lambda X)=|\lambda| \mu(X)$ and $\mu(\lambda+X)=\mu(X)$ for every $\lambda \in \mathbb{R}$, and for
every subset $X \subseteq \mathbb{R}$ which can be written finite unions of intervals. Then by Inclusion/Exclusion principle

$$
\mu\left(C_{n+1}\right)=\frac{1}{4} \mu\left(C_{n}\right)+\frac{1}{4} \mu\left(C_{n}\right)-\mu\left(\frac{1}{4} C_{n} \cap\left(\frac{3}{4}+\frac{1}{4} C_{n}\right)\right)
$$

But $\frac{1}{4} C_{n} \cap\left(\frac{3}{4}+\frac{1}{4} C_{n}\right)$ is the empty set. Then

$$
\mu\left(C_{n+1}\right)=\frac{1}{2} \mu\left(C_{n}\right)
$$

(c) Calculate $\mu\left(\bigcap_{n=0}^{\infty} C_{n}\right)$.

Solution: The recursive formula above indicates that $\mu\left(C_{n}\right)=\frac{1}{2^{n}} \mu\left(C_{0}\right)=\frac{1}{2^{n}}$. Since the standard measure on \mathbb{R} is continuous and C_{n} is a monotonously decreasing sequence of sets we get that

$$
\mu\left(\bigcap_{n=0}^{\infty} C_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

3. (a) Assume $\mu: 2^{X} \rightarrow[0, \infty) \cup\{\infty\}$ is a partial function such that $\mu(\emptyset)=0$. Show that the following statements are equivalent:
i. (Inclusion/Exclusion Principle) For all $A, B \subseteq X$ we have $\mu(A \cup B)=\mu(A)+\mu(B)-$ $\mu(A \cap B)$ whenever all of these numbers are finite.
ii. (Finite Additivity) For all $A, B \subseteq X$, if $A \cap B$ is empty then $\mu(A \cup B)=\mu(A)+\mu(B)$.

Solution: (\Longrightarrow) Assume we have IEP for μ, and assume we have $A, B \subseteq X$ such that $A \cap B=\emptyset$. Then by IEP

$$
\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)=\mu(A)+\mu(B)-\mu(\emptyset)=\mu(A)+\mu(B)
$$

Thus we have FA.
(\Longleftarrow) Assume we have FA for μ. Assume we have $A, B \subseteq X$ but we don't know if $A \cap B$ is empty. We can write

$$
A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)
$$

These sets are mutually disjoint. Then by FA we get

$$
\begin{aligned}
\mu(A \cup B) & =\mu((A \backslash B) \cup(A \cap B))+\mu(B \backslash A) \\
& =\mu(A \backslash B)+\mu(A \cap B)+\mu(B \backslash A)
\end{aligned}
$$

We also have disjoint unions of the shape

$$
A=(A \backslash B) \cup(A \cap B) \quad \text { and } \quad B=(B \backslash A) \cup(A \cap B)
$$

Then

$$
\mu(A)=\mu(A \backslash B)+\mu(A \cap B) \quad \text { and } \quad \mu(B)=\mu(B \backslash A)+\mu(A \cap B)
$$

This means

$$
\begin{aligned}
\mu(A \cup B) & =\mu(A \backslash B)+\mu(A \cap B)+\mu(B \backslash A) \\
& =\mu(A \backslash B)+\mu(A \cap B)+\mu(B \backslash A)+\mu(A \cap B)-\mu(A \cap B) \\
& =\mu(A)+\mu(B)-\mu(A \cap B)
\end{aligned}
$$

Thus we have IEP.
(b) Assume $\mu: 2^{X} \rightarrow[0, \infty)$ is a partial function which satisfies Finite Addivity. Show that $\mu(\emptyset)=0$.

Solution: Since $\emptyset \cap \emptyset=\emptyset$, by FA we have

$$
\mu(\emptyset)=\mu(\emptyset \cup \emptyset)=\mu(\emptyset)+\mu(\emptyset)=2 \mu(\emptyset)
$$

By definition of $\mu, \mu(\emptyset)$ is not ∞. Then the only real number λ which is equal to 2λ is 0.

