Name and Last Name:____

Student Number:

1. (a) (20 points) Write the definition of a σ -algebra on a set *X*.

Solution: A σ -algebra on X is a collection of sets $\mathcal{A} \subseteq 2^X$ such that

- (i) For every *A* and *B* in *A* the sets $A \cup B$, $A \cap B$, $A \setminus B$ and $B \setminus A$ are also in *A*.
- (ii) For every countable family $\{E_n\}_{n\in\mathbb{N}}$ in \mathcal{A} , the union $\bigcup_{n\in\mathbb{N}} E_n$ is also in \mathcal{A} .
- (b) (20 points) Write the definition of an upper measure on a set X.

Solution: An upper measure ν is a partial function $\nu: 2^X \to [0, \infty) \cup \{\infty\}$ which satisfies:

- (i) $\nu(\emptyset) = 0$,
- (ii) $\nu(A) \leq \nu(B)$ whenever $A \subseteq B$,
- (iii) $\nu \left(\bigcup_{n=0}^{\infty} E_n\right) \leq \sum_{n=0}^{\infty} \nu(E_n)$ for every countable family of sets $\{E_n\}_{n \in \mathbb{N}}$
- 2. Assume $n \ge 2$ and let $X = \{1, ..., n\}$. Let us define a set function $\eta: 2^X \to [0, \infty)$ by letting

$$\eta(U) = \frac{\sum_{x \in U} x^2}{|U|}$$

where |U| is the number of elements in U. In other words, we take the average of the squares of the numbers in U.

(a) (30 points) Show that η is not additive by giving a counter-example. In other words, find two disjoint subsets U and V in X such that $\eta(U \cup V) \neq \eta(U) + \eta(V)$.

Solution: We have
$$\eta(\{1\}) = \frac{1^2}{1} = 1 \quad \text{and} \quad \eta(\{2\}) = \frac{2^2}{1} = 4$$
 but
$$\eta(\{1,2\}) = \frac{1+4^2}{2} = \frac{9}{2} \neq 1+4$$

(b) (30 points) Show that η is sub-additive. In other words, verify that for every pair of subsets U and V in X we have $\eta(U \cup V) \leq \eta(U) + \eta(V)$.

Solution: We have $\frac{\sum_{x \in U \cup V} x^2}{|U \cup V|} \leq \frac{\sum_{x \in U} x^2}{|U \cup V|} + \frac{\sum_{x \in V} x^2}{|U \cup V|} \leq \frac{\sum_{x \in U} x^2}{|U|} + \frac{\sum_{x \in V} x^2}{|V|}$ In other words $\mu(U \cup V) \leq \mu(U) + \mu(V)$