\qquad Student Number: \qquad
I. (30 points) Write the definitions of the followings:
(a) An algebra on a set X.
(b) A σ-algebra on a set X.
(c) A measure on a σ-algebra on X.
(d) An outer measure on a set X.
(e) The Borel σ-algebra on a topological space X.
(f) A complete measure space.
2. (ıo points) Assume $\left(x_{n}\right)$ is an increasing sequence of real numbers $x_{n} \leq x_{n+1}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ for some real number a. Consider the collection of intervals

$$
E_{n}=\left[x_{n}, x_{n+1}\right)
$$

Calculate $\mu\left(\bigcup_{n=0}^{\infty} E_{n}\right)$. [Hint: Verify that $E_{n} \cap E_{m}=\emptyset$ whenever $n \neq m$.]

Solution: Assume $n \neq m$. Without loss of generality, we can assume $n<m$. Assume on the contrary that there is an element $u \in\left[x_{n}, x_{n+1}\right) \cap\left[x_{m}, x_{m+1}\right)$ Then

$$
x_{n} \leq u<x_{n+1} \leq x_{m} \leq u<x_{m+1}
$$

which can not be true because we are saying $u<u$. So, we get $E_{n} \cap E_{m}=\emptyset$ when $n \neq m$. Then by using the σ-additivity of the standard measure we get

$$
\mu\left(\bigcup_{n=0}^{\infty} E_{n}\right)=\sum_{n=0}^{\infty} \mu\left(\left[x_{n}, x_{n+1}\right)\right)=\sum_{n=0}^{\infty}\left(x_{n+1}-x_{n}\right)
$$

This is a telescopic series

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N}\left(x_{n+1}-x_{n}\right)=-x_{0}+x_{1}-x_{1}+x_{2}+\cdots-x_{N}+x_{N+1}=\lim _{n \rightarrow \infty} x_{N+1}-x_{0}=a-x_{0}
$$

3. (ro points) Assume (X, \mathcal{A}) is a measurable space such that one-point subsets $\{x\}$ are all in \mathcal{A}.
(a) Show that every countable subset $U \subseteq X$ is in \mathcal{A}.

Solution: A set U is countable if there is a one-to-one and onto function $f: \mathbb{N} \rightarrow U$. So, if $U \subseteq X$ is countable we can write it as a sequence of elements

$$
U=\left\{u_{0}, u_{1}, \ldots, u_{n}, \ldots\right\}
$$

Then

$$
U=\bigcup_{n=0}^{\infty}\left\{u_{n}\right\}
$$

Since \mathcal{A} is a σ-algebra and r-point sets $\left\{u_{n}\right\}$ are in \mathcal{A} we see that $U \in \mathcal{A}$ because it is closed under taking countable unions.
(b) Let μ be an outer measure on \mathcal{A} such that $\mu(\{x\})=0$ for every $x \in X$. Show that $\mu(U)=0$ for every countable subset $U \subseteq X$.

Solution: Since $U=\bigcup_{n=0}^{\infty}\left\{u_{n}\right\}$ and μ is an outer measure we get

$$
0 \leq \mu(U) \leq \sum_{n=0}^{\infty} \mu\left(\left\{u_{n}\right\}\right)=0
$$

So, $\mu(U)=0$.
4. (2o points) Recall that for any subset $X \subseteq \mathbb{R}$ and real number $\alpha \in \mathbb{R}$, we defined new subsets $\alpha X=\{\alpha x: x \in X\}$ and $\alpha+X=\{\alpha+x: x \in X\}$. Now, let $0<\lambda<\frac{1}{3}$ be a fixed real number. Let $C_{0}=[0,1]$ and let us define recursively

$$
C_{n+1}=\lambda C_{n} \cup\left((1-2 \lambda)+\lambda C_{n}\right)
$$

(a) Show that λC_{n} and $(1-2 \lambda)+\lambda C_{n}$ are disjoint subsets. [Hint: Sketch a picture.]

Solution: We can see that $C_{n} \subseteq[0,1]$ for every $n \geq 0$. Then $\lambda C_{n} \subseteq[0, \lambda]$ and

$$
(1-2 \lambda)+\lambda C_{n} \subseteq[1-2 \lambda, 1-\lambda]
$$

Since $\lambda<\frac{1}{3}$ we have $\lambda<1-2 \lambda$. So, λC_{n} and $(1-2 \lambda)+\lambda C_{n}$ are disjoint.
(b) Calculate the measure of C_{n} for every $n \geq 0$.

Solution: Since the pieces of C_{n+1} are disjoint

$$
\mu\left(C_{n+1}\right)=\mu\left(\lambda C_{n}\right)+\mu\left((1-2 \lambda)+\lambda C_{n}\right)=2 \lambda \cdot \mu\left(C_{n}\right)
$$

Since $\mu\left(C_{0}\right)=1$, we get that $\mu\left(C_{n}\right)=(2 \lambda)^{n}$.
(c) Show that $C_{n+1} \subset C_{n}$. [Hint: Sketch a picture.]

Solution: We do this by induction on n. We see that $C_{1}=[0, \lambda] \cup[1-2 \lambda, 1-\lambda] \subset[0,1]=C_{0}$. Now, assume $C_{n+1} \subseteq C_{n}$ and we would like to show that $C_{n+2} \subseteq C_{n+1}$. Since $C_{n+1} \subseteq C_{n}$ we get

$$
\lambda C_{n+1} \subseteq \lambda C_{n} \quad \text { and } \quad(1-2 \lambda)+\lambda C_{n+1} \subseteq(1-2 \lambda)+\lambda C_{n}
$$

Then

$$
\left(\lambda C_{n+1}\right) \cup\left((1-2 \lambda)+\lambda C_{n+1}\right)=C_{n+2} \subseteq C_{n+1}=\left(\lambda C_{n}\right) \cup\left((1-2 \lambda)+\lambda C_{n}\right)
$$

(d) Using the continuity of the ordinary measure on \mathbb{R}, calculate the measure of $C=\bigcap_{n=0}^{\infty} C_{n}$.

Solution: We saw above $C_{n} \supseteq C_{n+1}$. Then

$$
\mu(C)=\mu\left(\bigcap_{n=0}^{\infty} C_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\lim _{n \rightarrow \infty}(2 \lambda)^{n}=0
$$

since $2 \lambda<1$.
5. (30 points) Consider \mathbb{R}^{2} together with the σ-algebra generated by bounded convex sets \mathcal{C}. Now, for a bounded convex set $\Omega \subseteq \mathbb{R}^{2}$ define

$$
\eta(\Omega)=\operatorname{diam}(\Omega)=\sup \left\{\sqrt{(a-c)^{2}+(b-d)^{2}}:(a, b),(c, d) \in \Omega\right\}
$$

and then let

$$
\eta^{*}(A)=\inf \left\{\sum_{n=0}^{\infty} \eta\left(\Omega_{n}\right): A \subseteq \bigcup_{n=0}^{\infty} \Omega_{n}\right\}
$$

(a) Calculate η-measure of the interior of the rectangle determined by the points $(0,0),(2 \sqrt{3}, 0),(0,2)$ and $(2 \sqrt{3}, 2)$.

Solution: The measure η^{*} (Rectangle) is the length of the diagonal of this rectangle which is 4 .
(b) Show that η^{*} is monotone, i.e. $\eta^{*}(A) \leq \eta^{*}(B)$ whenever $A \subseteq B$.

Solution: Whenever $A \subseteq B$, we also have an inclusion of the form

$$
\left\{\sum_{n=0}^{\infty} \eta\left(\Omega_{n}\right): B \subseteq \bigcup_{n=0}^{\infty} \Omega_{n}\right\} \subseteq\left\{\sum_{n=0}^{\infty} \eta\left(\Omega_{n}\right): A \subseteq \bigcup_{n=0}^{\infty} \Omega_{n}\right\}
$$

This is because if $B \subseteq \bigcup_{n} \Omega_{n}$ then we also have $A \subseteq \bigcup_{n} \Omega_{n}$. Then

$$
\eta^{*}(B)=\inf \left\{\sum_{n=0}^{\infty} \eta\left(\Omega_{n}\right): B \subseteq \bigcup_{n=0}^{\infty} \Omega_{n}\right\} \geq \inf \left\{\sum_{n=0}^{\infty} \eta\left(\Omega_{n}\right): A \subseteq \bigcup_{n=0}^{\infty} \Omega_{n}\right\}=\eta^{*}(A)
$$

(c) Show that $\eta^{*}(\emptyset)=0$.

Solution: Any i-point set $\{x\}$ is convex and $\eta(\{x\})=0$. Then

$$
0 \leq \eta^{*}(\emptyset) \leq \eta(\{x\})=0
$$

since $\emptyset \subseteq\{x\}$ and η^{*} is monotone by the previous part.
(d) Show that η^{*} is σ-subadditive, i.e. for any countable family of set $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ we have

$$
\eta^{*}\left(\bigcup_{n=0}^{\infty} E_{n}\right) \leq \sum_{n=0}^{\infty} \eta^{*}\left(E_{n}\right)
$$

Solution: Fix an $\epsilon>0$. Then for every $n \geq 0$, there is a countable cover $\bigcup_{r=0}^{\infty} F_{n, r} \supseteq E_{n}$ by convex sets such that

$$
\eta\left(E_{n}\right) \leq \sum_{r=0}^{\infty} \eta\left(F_{n, r}\right)<\eta\left(E_{n}\right)+\frac{\epsilon}{2^{n}}
$$

Since we have

$$
\bigcup_{n=0}^{\infty} \bigcup_{r=0}^{\infty} F_{n, r} \supseteq \bigcup_{n=0}^{\infty} E_{n}
$$

we get

$$
\eta^{*}\left(\bigcup_{n=0}^{\infty} E_{n}\right) \leq \eta\left(\bigcup_{n=0}^{\infty} \bigcup_{r=0}^{\infty} F_{n, r}\right) \leq \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \eta\left(F_{n, r}\right) \leq \sum_{n=0}^{\infty} \eta^{*}\left(E_{n}\right)+\frac{\epsilon}{2^{n}}=\epsilon+\sum_{n=0}^{\infty} \eta^{*}\left(E_{n}\right)
$$

using the fact that $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A)+\operatorname{diam}(B)$ for all convex sets A and B. Since $\epsilon>0$ was arbitrary, we get that

$$
\eta^{*}\left(\bigcup_{n=0}^{\infty} E_{n}\right) \leq \sum_{n=0}^{\infty} \eta^{*}\left(E_{n}\right)
$$

