Math 332E (Measure Theory) Quiz III

Name and Last Name:___

Student Number:

1. Assume *X* is an arbitrary set. Recall that for a set $U \subset X$ we defined *the characteristic function* of *U* as

$$\chi_U(x) = \begin{cases} 1 & \text{if } x \in U \\ 0 & \text{if } x \notin U \end{cases}$$

Now, for two functions $f, g \colon X \to \mathbb{R}$ let us define

$$(f \cdot g)(x) = f(x)g(x)$$
 and $(f \vee g)(x) = \max\{f(x), g(x)\}$

Assume U and V are two subsets of X. Show that

(a) $\chi_U \cdot \chi_V = \chi_{U \cap V}$

Solution: We see that $(\chi_U \cdot \chi_V)(x) = 1$ if and only if $\chi_U(x) = \chi_V(x) = 1$ which works when, and only when, $x \in U \cap V$.

(b) $\chi_U \lor \chi_V = \chi_{U \cup V}$

Solution: We see that $(\chi_U \lor \chi_V)(x) = 1$ if and only if $\chi_U(x) = 1$ or $\chi_V(x) = 1$ which works when, and only when, $x \in U \cup V$.

- 2. Assume (X, \mathcal{A}, μ) is a measure space. Let $f, g \colon X \to \mathbb{R}$ be two measurable functions.
 - (a) Show that the subset $\{x \in X | f(x) < g(x)\}$ is measurable, i.e. it is in A.
 - [Hint: f g is a measurable function.]

Solution: The difference f - g measurable since both f and g are measurable. Then we have

$$\{x \in X \mid f(x) < g(x)\} = \{x \in X \mid (f - g)(x) < 0\}$$

which is a measurable set by definition.

(b) If $\{x \in X | f(x) < g(x)\}$ has measure 0, show that $\int_X f d\mu \ge \int_X g d\mu$.

Solution: Let $N = \{x \in X | f(x) < g(x)\}$ and $P = \{x \in X | f(x) \ge g(x)\}$. Our hypothesis says $\mu(N) = 0$ and we have

$$\int_X (f-g)d\mu = \int_P (f-g)d\mu + \int_N (f-g)d\mu$$

Now, let

$$N_k = \{ x \in X | -k \le f(x) - g(x) < 0 \}$$

and we have $N = \bigcup_{k=1}^{\infty} N_k$. Since each N_k is measurable we also get $0 \le \mu(N_k) \le \mu(N) = 0$ for every $k \ge 1$ and

$$0 \le \int_N (g-f)d\mu = \sup_k \int_{N_k} (g-f)d\mu \le k\mu(N_k) = 0$$

Then

$$\int_X (f-g)d\mu = \int_P (f-g)d\mu$$

and by the monotonicity of the integrals, we get that $\int_P (f-g)d\mu \ge 0$.

- 3. Recall that $U \subseteq \mathbb{R}$ is open when for every $x \in U$ there is a $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subseteq U$. Now, let us consider \mathbb{R} as a measurable space by considering \mathbb{R} together with the Borel σ -algebra \mathcal{B} generated by open subsets of X. Assume μ is the standard Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.
 - (a) Show that $\mu(U) > 0$ for all non-empty open sets $U \subseteq \mathbb{R}$.

Solution: Take any $x \in U$. Then there is a $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subseteq U$. Since μ is a measure, it is a monotone set function. Then

$$\mu(U) \ge \mu((x - \epsilon, x + \epsilon)) = 2\epsilon > 0$$

(b) Assume $U \subseteq \mathbb{R}$ is open and let $f \colon \mathbb{R} \to [0,\infty)$ be a measurable function such that

$$\int_U f d\mu = 0$$

Show that the set $\{x \in U | f(x) > 0\}$ has measure 0.

Solution: We will use proof by contradiction. Assume that the set $\{x \in U | f(x) > 0\}$ has positive measure. Then there is a $\epsilon > 0$ such that the set $\{x \in U | f(x) > \epsilon\}$ has positive measure. Then

$$\int_U f d\mu \ge \int_U \epsilon d\mu = \epsilon \mu(U) > 0$$

which is a contradiction.

(c) If $f : \mathbb{R} \to [0, \infty)$ is continuous and satisfies the condition $\int_U f d\mu = 0$ for an open subset $U \subseteq \mathbb{R}$, show that f(x) = 0 for all $x \in U$.

Solution: Since f is continuous and U is open, the set

$$\{x \in U | f(x) > 0\} = U \cap f^{-1}(0, \infty)$$

is open. By part (b) the set must have 0 measure. But part (a) says all non-empty open sets have positive measure. So, the set must be empty.