$\qquad$ Student Number: $\qquad$

1. Assume $X$ is an arbitrary set. Recall that for a set $U \subset X$ we defined the characteristic function of $U$ as

$$
\chi_{U}(x)= \begin{cases}1 & \text { if } x \in U \\ 0 & \text { if } x \notin U\end{cases}
$$

Now, for two functions $f, g: X \rightarrow \mathbb{R}$ let us define

$$
(f \cdot g)(x)=f(x) g(x) \quad \text { and } \quad(f \vee g)(x)=\max \{f(x), g(x)\}
$$

Assume $U$ and $V$ are two subsets of $X$. Show that
(a) $\chi_{U} \cdot \chi_{V}=\chi_{U \cap V}$

Solution: We see that $\left(\chi_{U} \cdot \chi_{V}\right)(x)=1$ if and only if $\chi_{U}(x)=\chi_{V}(x)=1$ which works when, and only when, $x \in U \cap V$.
(b) $\chi_{U} \vee \chi_{V}=\chi_{U U V}$

Solution: We see that $\left(\chi_{U} \vee \chi_{V}\right)(x)=1$ if and only if $\chi_{U}(x)=1$ or $\chi_{V}(x)=1$ which works when, and only when, $x \in U \cup V$.
2. Assume $(X, \mathcal{A}, \mu)$ is a measure space. Let $f, g: X \rightarrow \mathbb{R}$ be two measurable functions.
(a) Show that the subset $\{x \in X \mid f(x)<g(x)\}$ is measurable, i.e. it is in $\mathcal{A}$.
[Hint: $f-g$ is a measurable function.]
Solution: The difference $f-g$ measurable since both $f$ and $g$ are measurable. Then we have

$$
\{x \in X \mid f(x)<g(x)\}=\{x \in X \mid(f-g)(x)<0\}
$$

which is a measurable set by definition.
(b) If $\{x \in X \mid f(x)<g(x)\}$ has measure 0 , show that $\int_{X} f d \mu \geq \int_{X} g d \mu$.

Solution: Let $N=\{x \in X \mid f(x)<g(x)\}$ and $P=\{x \in X \mid f(x) \geq g(x)\}$. Our hypothesis says $\mu(N)=0$ and we have

$$
\int_{X}(f-g) d \mu=\int_{P}(f-g) d \mu+\int_{N}(f-g) d \mu
$$

Now, let

$$
N_{k}=\{x \in X \mid-k \leq f(x)-g(x)<0\}
$$

and we have $N=\bigcup_{k=1}^{\infty} N_{k}$. Since each $N_{k}$ is measurable we also get $0 \leq \mu\left(N_{k}\right) \leq \mu(N)=0$ for every $k \geq 1$ and

$$
0 \leq \int_{N}(g-f) d \mu=\sup _{k} \int_{N_{k}}(g-f) d \mu \leq k \mu\left(N_{k}\right)=0
$$

Then

$$
\int_{X}(f-g) d \mu=\int_{P}(f-g) d \mu
$$

and by the monotonicity of the integrals, we get that $\int_{P}(f-g) d \mu \geq 0$.
3. Recall that $U \subseteq \mathbb{R}$ is open when for every $x \in U$ there is a $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subseteq U$. Now, let us consider $\mathbb{R}$ as a measurable space by considering $\mathbb{R}$ together with the Borel $\sigma$-algebra $\mathcal{B}$ generated by open subsets of $X$. Assume $\mu$ is the standard Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.
(a) Show that $\mu(U)>0$ for all non-empty open sets $U \subseteq \mathbb{R}$.

Solution: Take any $x \in U$. Then there is a $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subseteq U$. Since $\mu$ is a measure, it is a monotone set function. Then

$$
\mu(U) \geq \mu((x-\epsilon, x+\epsilon))=2 \epsilon>0
$$

(b) Assume $U \subseteq \mathbb{R}$ is open and let $f: \mathbb{R} \rightarrow[0, \infty)$ be a measurable function such that

$$
\int_{U} f d \mu=0
$$

Show that the set $\{x \in U \mid f(x)>0\}$ has measure 0 .
Solution: We will use proof by contradiction. Assume that the set $\{x \in U \mid f(x)>0\}$ has positive measure. Then there is a $\epsilon>0$ such that the set $\{x \in U \mid f(x)>\epsilon\}$ has positive measure. Then

$$
\int_{U} f d \mu \geq \int_{U} \epsilon d \mu=\epsilon \mu(U)>0
$$

which is a contradiction.
(c) If $f: \mathbb{R} \rightarrow[0, \infty)$ is continuous and satisfies the condition $\int_{U} f d \mu=0$ for an open subset $U \subseteq \mathbb{R}$, show that $f(x)=0$ for all $x \in U$.

Solution: Since $f$ is continuous and $U$ is open, the set

$$
\{x \in U \mid f(x)>0\}=U \cap f^{-1}(0, \infty)
$$

is open. By part (b) the set must have 0 measure. But part (a) says all non-empty open sets have positive measure. So, the set must be empty.

