Name and Last Name: Student Number:

Question:	I	2	3	4	5	6	Total
Points:	40	20	30	35	35	40	200
Score:							

- 1. (40 points) Give a definition of the following terms:
 - (a) \mathcal{A} is a σ -algebra on a set X.
 - (b) μ is a measure on a measurable space (X, \mathcal{A}) .
 - (c) μ is an outer measure on a measurable space (X, \mathcal{A}) .
 - (d) $f: X \to Y$ is a measurable function from a measurable space (X, \mathcal{A}) to another measurable space (Y, \mathcal{B}) .

2. (20 points) Assume X is a set. Recall that for every $Y \subseteq X$ we defined

$$\chi_Y(a) = \begin{cases} 1 & \text{ if } a \in Y \\ 0 & \text{ if } a \notin Y \end{cases}$$

(a) Show that $\chi_Y \cdot \chi_Z = \chi_{Y \cap Z}$ for every $Y, Z \subseteq X$.

Solution: We can see that $(\chi_Y \cdot \chi_Z)(x) = 1$ only when both $\chi_Y(x) = 1$ and $\chi_Z(x) = 1$. This means $(\chi_Y \cdot \chi_Z)(x) = (\chi_{Y \cap Z}(x)$ for every $x \in X$.

(b) Show that $\max(\chi_Y, \chi_Z) = \chi_{Y \cup Z}$ for every $Y, Z \subseteq X$.

Solution: We see that $\max(\chi_Y, \chi_Z)(x) = 0$ only when $\chi_Y(x) = 0$ and $\chi_Z(x) = 0$. This means $\max(\chi_Y, \chi_Z)(x) = \chi_{Y \cup Z}(x)$ for every $x \in X$.

3. (30 points) Assume (X, \mathcal{A}) is a σ -algebra and let $Y \subseteq X$ be an arbitrary subset. Show that the family of sets

$$\mathcal{B} := \{ U \cap Y | U \in \mathcal{A} \}$$

is a σ -algebra on Y.

Solution:

- i) Since $\emptyset \in \mathcal{A}$ we see that $\emptyset \cap Y = \emptyset \in \mathcal{B}$. Also, since $X \in \mathcal{A}$ we also have $X \cap Y = Y \in \mathcal{B}$.
- ii) If $U, V \in \mathcal{B}$ then there are $U', V' \in \mathcal{A}$ such that

 $U = U' \cap Y \quad \text{and} \quad V' = V \cap Y$

Then $U' \setminus V' \in \mathcal{A}$ since \mathcal{A} is an algebra. But then

$$U \setminus V = U \cap V^c = (U' \cap Y) \cap (V' \cap Y)^c$$

= $(U' \cap Y) \cap ((V')^c \cup Y^c) = (U' \cap (V')^c \cap Y) \cup (U' \cap Y \cap Y^c)$
= $(U' \setminus V') \cap Y$

is in \mathcal{B} since $U' \setminus V'$ is in \mathcal{A} .

iii) Assume we have a countable family of subsets $\{U_i\}_{i\in\mathbb{N}}$ in \mathcal{B} . Then by definition there is another family of subsets $\{U'_i\}_{i\in\mathbb{N}}$ in \mathcal{A} such that $U_i = U'_i \cap Y$. Since \mathcal{A} is a σ -algebra we get that $\bigcup_{i\in\mathbb{N}} U'_i \in \mathcal{A}$. Then we also see that

$$\bigcup_{i\in\mathbb{N}}U_i=\bigcup_{i\in\mathbb{N}}U_i'\cap Y=Y\cap\bigcup_{i\in\mathbb{N}}U_i'$$

is also in \mathcal{B} .

Page 2 of 6

Final Exam

- 4. (35 points) Let (X, \mathcal{A}) be a measurable space. Let $\eta \colon \mathcal{A} \to [0, \infty)$ be a set function such that
 - i) $\eta(\emptyset) = 0$
 - ii) $\eta(X) < \infty$
 - iii) for all $U \subseteq V$ in \mathcal{A} we have $\eta(U) \leq \eta(V) \leq \eta(U) + \eta(V \setminus U)$

Let us define

$$\eta^*(Z) = \inf\left\{\sum_i \eta(U_i) : \bigcup_{i=0}^{\infty} U_i \supseteq Z\right\}$$

for every $Z \subseteq X$.

(a) Show that $\eta(U) = \eta^*(U)$ for every $U \in \mathcal{A}$.

Solution: One can see that $\eta(A \cup B) \leq \eta(A) + \eta(B)$ whenever $A \cap B = \emptyset$ by setting $V = A \cup B$ and U = A. In case $A \cap B \neq \emptyset$ the inequality still holds since $B \subseteq (A \cup B) \setminus A$ and η is monotone. This proves η is finitely subadditive. Then given any cover $U \subseteq \bigcup_i U_i$ we get

$$\eta(U) \le \sum_i \eta(U_i)$$

which means $\eta(U) \leq \eta^*(U)$ On the other hand U as a singleton family is a cover of U since $U \in \mathcal{A}$. Thus $\eta^*(U) \leq \eta(U)$ which proves $\eta^*(U) = \eta(U)$.

(b) Show that η^* is an outer measure on X.

Solution: We know that $\eta(\emptyset) = 0$. The fact that η is monotone is also given. We must show that η is countably subadditive. Take $E \subseteq X$ and take a countable cover $E \subseteq \bigcup_n E_n$. Fix an $\epsilon > 0$. Then for every $n \ge 0$, there is a countable cover $\bigcup_{r=0}^{\infty} F_{n,r} \supseteq E_n$ in \mathcal{A} such that

$$\eta^*(E_n) \le \sum_{r=0}^{\infty} \eta(F_{n,r}) < \eta^*(E_n) + \frac{\epsilon}{2^n}$$

Since we have

$$\bigcup_{n=0}^{\infty} \bigcup_{r=0}^{\infty} F_{n,r} \supseteq \bigcup_{n=0}^{\infty} E_n$$

we get

$$\eta^* \left(\bigcup_{n=0}^{\infty} E_n \right) \le \eta \left(\bigcup_{n=0}^{\infty} \bigcup_{r=0}^{\infty} F_{n,r} \right) \le \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \eta(F_{n,r}) \le \sum_{n=0}^{\infty} \eta^*(E_n) + \frac{\epsilon}{2^n} = \epsilon + \sum_{n=0}^{\infty} \eta^*(E_n)$$

using the fact that η is monotone. Since $\epsilon>0$ was arbitrary, we get that

$$\eta^* \left(\bigcup_{n=0}^{\infty} E_n \right) \le \sum_{n=0}^{\infty} \eta^*(E_n)$$

Page 3 of 6

Final Exam

5. (35 points) Let us define

$$f_n(x) = \begin{cases} x - \frac{1}{n} & \text{if } 0 \le x \le 1 - \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

(a) Calculate the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$.

Solution: The pointwise limit is

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 0 & \text{otherwise} \end{cases}$$

(b) We would like to calculate the Lebesgue integral $\int_{\mathbb{R}} f d\mu$. However, as you might recall, it is not easy to say

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n d\mu = \int_{\mathbb{R}} \lim_{n \to \infty} f_n d\mu$$

State which theorem we can use to safely say that the equality above holds. Explain why we can use that specific theorem.

Solution: We can use both *Dominated Convergence Theorem* (DCT) and *Monotone Convergence Theorem* (MCT). We can use MCT because $f_n(x) \leq f_{n+1}(x)$ for every $x \in \mathbb{R}$. We can use DCT because $f_n(x) \leq \chi_{[0,1)}$ and $\chi_{[0,1)}$ is a measurable and integrable function. One can replace $\chi_{[0,1)}$ with f(x) or any other measurable integrable function g(x) as long as $f_n(x) \leq g(x)$ for every $x \in \mathbb{R}$.

(c) Calculate $\int_{\mathbb{R}} f d\mu$.

Solution: We can see that $\int_{\mathbb{R}} f d\mu = \int_{[0,1)} x d\mu$. Since f(x) = x is a continuous function, its Lebesgue integral and Riemann integral are the same. Then

$$\int_{\mathbb{R}} f d\mu = \int_{[0,1)} x d\mu = \int_0^1 x dx$$

Then by the Fundamental Theorem of Calculus we get

$$\int_0^1 x dx = \left. \frac{x^2}{2} \right|_0^1 = \frac{1}{2}$$

6. (40 points) Consider $X = \{1, 2, ..., 100\}$ together with the largest σ -algebra 2^X on X. Define

$$\eta(U) = |U|$$
 and $\mu(U) = \begin{cases} 1 & \text{if } 1 \in U \\ 0 & \text{otherwise} \end{cases}$

Let us also define $f(n) = (-1)^n$.

(a) Calculate $\int_X f d\eta$

Solution: First, split X into two pieces

$$E = \{2n | n = 1, 2, \dots, 50\}$$
 and $O = \{2n - 1 | n = 1, 2, \dots, 50\}$

where E contains the even numbers in X while ${\cal O}$ contains the odd numbers in X. Then we can see that

$$\eta(E) = |E| = |O| = \eta(O) = 50$$

Moreover,

$$\int_X f d\eta = \int_E f d\eta + \int_O f d\eta = \int_E (-1)d\eta + \int_O (+1)d\eta$$
$$= (-1)\eta(E) + (+1)\eta(O) = -50 + 50 = 0$$

(b) Calculate $\int_X f d\mu$

Solution: Again, we split X into two pieces. This time

$$P = \{1\}$$
 and $Q = \{2, 3, \dots, 100\}$

Then

$$\begin{split} \int_X f d\mu &= \int_P f d\mu + \int_Q f d\mu \\ &= \int_P f d\mu + \int_{Q \cap E} f d\mu + \int_{Q \cap O} f d\mu \\ &= (-1)\mu(\{1\}) + (+1)\mu(Q \cap E) + (-1)\mu(Q \cap E) \\ &= -1 + 0 + 0 = -1 \end{split}$$

(c) Define g(n,m) = f(n+m) and calculate $\int_{X \times X} g \, d(\eta \otimes \mu)$.

Page 5 of 6

Final Exam

Solution: We have

$$\int_{X\times X} g \, d(\eta\otimes\mu) = \int_{X\times X} (-1)^{n+m} d(\eta\otimes\mu)$$

By Fubini's Theorem we can calculate the integral over the product measure as an iterated double integral

$$\int_X \int_X (-1)^{n+m} d\eta(n) d\mu(m) = \int_X \int_X (-1)^{n+m} d\mu(m) d\eta(n)$$

However, since $(-1)^{n+m}=(-1)^n(-1)^m$ we get

$$\begin{split} \int_X \int_X (-1)^{n+m} d\eta(n) d\mu(m) &= \int_X (-1)^m \int_X (-1)^n d\eta(n) d\mu(m) \\ &= \int_X (-1)^m \cdot 0 \, d\mu(m) = 0 \end{split}$$

from part (a).