Name and Last Name:
Student Number:

Question:	I	2	3	4	5	6	Total
Points:	40	20	30	35	35	40	200
Score:							

I. (40 points) Give a definition of the following terms:
(a) \mathcal{A} is a σ-algebra on a set X.
(b) μ is a measure on a measurable space (X, \mathcal{A}).
(c) μ is an outer measure on a measurable space (X, \mathcal{A}).
(d) $f: X \rightarrow Y$ is a measurable function from a measurable space (X, \mathcal{A}) to another measurable space (Y, \mathcal{B}).
2. (20 points) Assume X is a set. Recall that for every $Y \subseteq X$ we defined

$$
\chi_{Y}(a)= \begin{cases}1 & \text { if } a \in Y \\ 0 & \text { if } a \notin Y\end{cases}
$$

(a) Show that $\chi_{Y} \cdot \chi_{Z}=\chi_{Y \cap Z}$ for every $Y, Z \subseteq X$.

Solution: We can see that $\left(\chi_{Y} \cdot \chi_{Z}\right)(x)=1$ only when both $\chi_{Y}(x)=1$ and $\chi_{Z}(x)=1$. This means $\left(\chi_{Y} \cdot \chi_{Z}\right)(x)=\left(\chi_{Y \cap Z}(x)\right.$ for every $x \in X$.
(b) Show that $\max \left(\chi_{Y}, \chi_{Z}\right)=\chi_{Y \cup Z}$ for every $Y, Z \subseteq X$.

Solution: We see that $\max \left(\chi_{Y}, \chi_{Z}\right)(x)=0$ only when $\chi_{Y}(x)=0$ and $\chi_{Z}(x)=0$. This means $\max \left(\chi_{Y}, \chi_{Z}\right)(x)=\chi_{Y \cup Z}(x)$ for every $x \in X$.
3. (30 points) Assume (X, \mathcal{A}) is a σ-algebra and let $Y \subseteq X$ be an arbitrary subset. Show that the family of sets

$$
\mathcal{B}:=\{U \cap Y \mid U \in \mathcal{A}\}
$$

is a σ-algebra on Y.

Solution:

i) Since $\emptyset \in \mathcal{A}$ we see that $\emptyset \cap Y=\emptyset \in \mathcal{B}$. Also, since $X \in \mathcal{A}$ we also have $X \cap Y=Y \in \mathcal{B}$.
ii) If $U, V \in \mathcal{B}$ then there are $U^{\prime}, V^{\prime} \in \mathcal{A}$ such that

$$
U=U^{\prime} \cap Y \quad \text { and } \quad V^{\prime}=V \cap Y
$$

Then $U^{\prime} \backslash V^{\prime} \in \mathcal{A}$ since \mathcal{A} is an algebra. But then

$$
\begin{aligned}
U \backslash V & =U \cap V^{c}=\left(U^{\prime} \cap Y\right) \cap\left(V^{\prime} \cap Y\right)^{c} \\
& =\left(U^{\prime} \cap Y\right) \cap\left(\left(V^{\prime}\right)^{c} \cup Y^{c}\right)=\left(U^{\prime} \cap\left(V^{\prime}\right)^{c} \cap Y\right) \cup\left(U^{\prime} \cap Y \cap Y^{c}\right) \\
& =\left(U^{\prime} \backslash V^{\prime}\right) \cap Y
\end{aligned}
$$

is in \mathcal{B} since $U^{\prime} \backslash V^{\prime}$ is in \mathcal{A}.
iii) Assume we have a countable family of subsets $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ in \mathcal{B}. Then by definition there is another family of subsets $\left\{U_{i}^{\prime}\right\}_{i \in \mathbb{N}}$ in \mathcal{A} such that $U_{i}=U_{i}^{\prime} \cap Y$. Since \mathcal{A} is a σ-algebra we get that $\bigcup_{i \in \mathbb{N}} U_{i}^{\prime} \in \mathcal{A}$. Then we also see that

$$
\bigcup_{i \in \mathbb{N}} U_{i}=\bigcup_{i \in \mathbb{N}} U_{i}^{\prime} \cap Y=Y \cap \bigcup_{i \in \mathbb{N}} U_{i}^{\prime}
$$

is also in \mathcal{B}.
4. (35 points) Let (X, \mathcal{A}) be a measurable space. Let $\eta: \mathcal{A} \rightarrow[0, \infty)$ be a set function such that
i) $\eta(\emptyset)=0$
ii) $\eta(X)<\infty$
iii) for all $U \subseteq V$ in \mathcal{A} we have $\eta(U) \leq \eta(V) \leq \eta(U)+\eta(V \backslash U)$

Let us define

$$
\eta^{*}(Z)=\inf \left\{\sum_{i} \eta\left(U_{i}\right): \bigcup_{i=0}^{\infty} U_{i} \supseteq Z\right\}
$$

for every $Z \subseteq X$.
(a) Show that $\eta(U)=\eta^{*}(U)$ for every $U \in \mathcal{A}$.

Solution: One can see that $\eta(A \cup B) \leq \eta(A)+\eta(B)$ whenever $A \cap B=\emptyset$ by setting $V=A \cup B$ and $U=A$. In case $A \cap B \neq \emptyset$ the inequality still holds since $B \subseteq(A \cup B) \backslash A$ and η is monotone. This proves η is finitely subadditive. Then given any cover $U \subseteq \bigcup_{i} U_{i}$ we get

$$
\eta(U) \leq \sum_{i} \eta\left(U_{i}\right)
$$

which means $\eta(U) \leq \eta^{*}(U)$ On the other hand U as a singleton family is a cover of U since $U \in \mathcal{A}$. Thus $\eta^{*}(U) \leq \eta(U)$ which proves $\eta^{*}(U)=\eta(U)$.
(b) Show that η^{*} is an outer measure on X.

Solution: We know that $\eta(\emptyset)=0$. The fact that η is monotone is also given. We must show that η is countably subadditive. Take $E \subseteq X$ and take a countable cover $E \subseteq \bigcup_{n} E_{n}$. Fix an $\epsilon>0$. Then for every $n \geq 0$, there is a countable cover $\bigcup_{r=0}^{\infty} F_{n, r} \supseteq E_{n}$ in \mathcal{A} such that

$$
\eta^{*}\left(E_{n}\right) \leq \sum_{r=0}^{\infty} \eta\left(F_{n, r}\right)<\eta^{*}\left(E_{n}\right)+\frac{\epsilon}{2^{n}}
$$

Since we have

$$
\bigcup_{n=0}^{\infty} \bigcup_{r=0}^{\infty} F_{n, r} \supseteq \bigcup_{n=0}^{\infty} E_{n}
$$

we get
$\eta^{*}\left(\bigcup_{n=0}^{\infty} E_{n}\right) \leq \eta\left(\bigcup_{n=0}^{\infty} \bigcup_{r=0}^{\infty} F_{n, r}\right) \leq \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \eta\left(F_{n, r}\right) \leq \sum_{n=0}^{\infty} \eta^{*}\left(E_{n}\right)+\frac{\epsilon}{2^{n}}=\epsilon+\sum_{n=0}^{\infty} \eta^{*}\left(E_{n}\right)$
using the fact that η is monotone. Since $\epsilon>0$ was arbitrary, we get that

$$
\eta^{*}\left(\bigcup_{n=0}^{\infty} E_{n}\right) \leq \sum_{n=0}^{\infty} \eta^{*}\left(E_{n}\right)
$$

5. (35 points) Let us define

$$
f_{n}(x)= \begin{cases}x-\frac{1}{n} & \text { if } 0 \leq x \leq 1-\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Calculate the pointwise limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.

Solution: The pointwise limit is

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) We would like to calculate the Lebesgue integral $\int_{\mathbb{R}} f d \mu$. However, as you might recall, it is not easy to say

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu=\int_{\mathbb{R}} \lim _{n \rightarrow \infty} f_{n} d \mu
$$

State which theorem we can use to safely say that the equality above holds. Explain why we can use that specific theorem.

Solution: We can use both Dominated Convergence Theorem (DCT) and Monotone Convergence Theorem (MCT). We can use MCT because $f_{n}(x) \leq f_{n+1}(x)$ for every $x \in \mathbb{R}$. We can use DCT because $f_{n}(x) \leq \chi_{[0,1)}$ and $\chi_{[0,1)}$ is a measurable and integrable function. One can replace $\chi_{[0,1)}$ with $f(x)$ or any other measurable integrable function $g(x)$ as long as $f_{n}(x) \leq g(x)$ for every $x \in \mathbb{R}$.
(c) Calculate $\int_{\mathbb{R}} f d \mu$.

Solution: We can see that $\int_{\mathbb{R}} f d \mu=\int_{[0,1)} x d \mu$. Since $f(x)=x$ is a continuous function, its Lebesgue integral and Riemann integral are the same. Then

$$
\int_{\mathbb{R}} f d \mu=\int_{[0,1)} x d \mu=\int_{0}^{1} x d x
$$

Then by the Fundamental Theorem of Calculus we get

$$
\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

6. (4o points) Consider $X=\{1,2, \ldots, 100\}$ together with the largest σ-algebra 2^{X} on X. Define

$$
\eta(U)=|U| \quad \text { and } \quad \mu(U)= \begin{cases}1 & \text { if } 1 \in U \\ 0 & \text { otherwise }\end{cases}
$$

Let us also define $f(n)=(-1)^{n}$.
(a) Calculate $\int_{X} f d \eta$

Solution: First, split X into two pieces

$$
E=\{2 n \mid n=1,2, \ldots, 50\} \quad \text { and } \quad O=\{2 n-1 \mid n=1,2, \ldots, 50\}
$$

where E contains the even numbers in X while O contains the odd numbers in X. Then we can see that

$$
\eta(E)=|E|=|O|=\eta(O)=50
$$

Moreover,

$$
\begin{aligned}
\int_{X} f d \eta & =\int_{E} f d \eta+\int_{O} f d \eta=\int_{E}(-1) d \eta+\int_{O}(+1) d \eta \\
& =(-1) \eta(E)+(+1) \eta(O)=-50+50=0
\end{aligned}
$$

(b) Calculate $\int_{X} f d \mu$

Solution: Again, we split X into two pieces. This time

$$
P=\{1\} \quad \text { and } \quad Q=\{2,3, \ldots, 100\}
$$

Then

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{P} f d \mu+\int_{Q} f d \mu \\
& =\int_{P} f d \mu+\int_{Q \cap E} f d \mu+\int_{Q \cap O} f d \mu \\
& =(-1) \mu(\{1\})+(+1) \mu(Q \cap E)+(-1) \mu(Q \cap E) \\
& =-1+0+0=-1
\end{aligned}
$$

(c) Define $g(n, m)=f(n+m)$ and calculate $\int_{X \times X} g d(\eta \otimes \mu)$.

Solution: We have

$$
\int_{X \times X} g d(\eta \otimes \mu)=\int_{X \times X}(-1)^{n+m} d(\eta \otimes \mu)
$$

By Fubini's Theorem we can calculate the integral over the product measure as an iterated double integral

$$
\int_{X} \int_{X}(-1)^{n+m} d \eta(n) d \mu(m)=\int_{X} \int_{X}(-1)^{n+m} d \mu(m) d \eta(n)
$$

However, since $(-1)^{n+m}=(-1)^{n}(-1)^{m}$ we get

$$
\begin{aligned}
\int_{X} \int_{X}(-1)^{n+m} d \eta(n) d \mu(m) & =\int_{X}(-1)^{m} \int_{X}(-1)^{n} d \eta(n) d \mu(m) \\
& =\int_{X}(-1)^{m} \cdot 0 d \mu(m)=0
\end{aligned}
$$

from part (a).

