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ITU PHYSICS ENGINEERING. STUDENT, oct07, 16
IDENTITY NUMBER :
NAME SURNAME :
FIZ 411E HOMEWORK − 1 (about CHAPTERS 1 and 2) due oct19, 16 Wendesday
Lecture book : introduction to electrodynamics 4th edition by David J. Griffiths (all figures from Lect. bk.)
POINT :
[Question.1] About the fundamental theorems.

Solve by choosing the ‘only one’ of between the given three parts in the following:

[Q.1a] Write the fundamental theorem for gradients.
Then solve the Example 1.9 in the lecture book.1.3 Integral Calculus 31
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The total line integral is 2. Is this consistent with the fundamental theorem? Yes:
T (b) − T (a) = 2 − 0 = 2.

Now, just to convince you that the answer is independent of path, let me calcu-
late the same integral along path iii (the straight line from a to b):

(iii) y = 1
2 x, dy = 1

2 dx, ∇T · dl = y2 dx + 2xy dy = 3
4 x2 dx , so

∫
iii

∇T · dl =
∫ 2

0

3
4 x2 dx = 1

4 x3
∣∣∣2

0
= 2.

Problem 1.32 Check the fundamental theorem for gradients, using T = x2 +
4xy + 2yz3, the points a = (0, 0, 0), b = (1, 1, 1), and the three paths in Fig. 1.28:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1);

(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1);

(c) the parabolic path z = x2; y = x .
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1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

∫
V

(∇ · v) dτ =
∮
S

v · da. (1.56)

[Q.1b] Write the fundamental theorem for divergences (known as GAUSS’ THEOREM or GREEN’ S THEOREM).
Then solve the Example 1.10 in the lecture book.1.3 Integral Calculus 33
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So much for the left side of the divergence theorem. To evaluate the surface
integral we must consider separately the six faces of the cube:

(i)
∫

v · da =
∫ 1

0

∫ 1

0
y2dy dz = 1

3 .

(ii)
∫

v · da = −
∫ 1

0

∫ 1

0
y2 dy dz = − 1

3 .

(iii)
∫

v · da =
∫ 1

0

∫ 1

0
(2x + z2) dx dz = 4

3 .

(iv)

∫
v · da = −

∫ 1

0

∫ 1

0
z2 dx dz = − 1

3 .

(v)

∫
v · da =

∫ 1

0

∫ 1

0
2y dx dy = 1.

(vi)
∫

v · da = −
∫ 1

0

∫ 1

0
0 dx dy = 0.

So the total flux is: ∮
S

v · da = 1
3 − 1

3 + 4
3 − 1

3 + 1 + 0 = 2,

as expected.

Problem 1.33 Test the divergence theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.

[Q.1c] Write the fundamental theorem for rotations (known as STOKES’ THEOREM).
Then solve the Example 1.11 in the lecture book.
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this is not the case with curls. For Stokes’ theorem says that
∫
(∇ × v) · da is equal

to the line integral of v around the boundary, and the latter makes no reference to
the specific surface you choose.

Corollary 1:
∫
(∇ × v) · da depends only on the boundary line, not

on the particular surface used.

Corollary 2:
∮
(∇ × v) · da = 0 for any closed surface, since the

boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We will develop
the parallel further in due course.

Example 1.11. Suppose v = (2xz + 3y2)ŷ + (4yz2)ẑ. Check Stokes’ theorem
for the square surface shown in Fig. 1.33.

Solution
Here

∇ × v = (4z2 − 2x) x̂ + 2z ẑ and da = dy dz x̂.
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(In saying that da points in the x direction, we are committing ourselves to a
counterclockwise line integral. We could as well write da = −dy dz x̂, but then
we would be obliged to go clockwise.) Since x = 0 for this surface,

∫
(∇ × v) · da =

∫ 1

0

∫ 1

0
4z2 dy dz = 4

3
.

[Question.2] About the Dirac Delta Function.

[Q.2.1] List the Dirac Delta function properties.

[Q.2.2] With the help of Dirac Delta function (in three-dim.s),

[Q.2.2.a] Take the vector v = 1
r2 r̂. Find ∇ · v =? in the spherical coordinates.

[Q.2.2.b] Take the separation vector r ≡ r − r′. Find ∇ · ( r̂
r 2 ) =? in the spherical coordinates.

[Q.2.2.c] Find ∇ ( 1r ) =? and ∇2 ( 1r ) =?



2

[Question.3] About the Electric field vector E definitions.

[Q.3.1] Think discrete charges (imagine as the following figure), write the most general expressions of Coulomb
Force expression, F and then E.

2.1 The Electric Field 61

(c) Now 13 equal charges, q, are placed at the corners of a regular 13-sided
polygon. What is the force on a test charge Q at the center?

(d) If one of the 13 q’s is removed, what is the force on Q? Explain your reasoning.

2.1.3 The Electric Field

If we have several point charges q1, q2, . . . , qn , at distances r1, r2, . . . , rn from
Q, the total force on Q is evidently

F = F1 + F2 + . . . = 1

4πε0

(
q1 Q

r21
r̂1 + q2 Q

r22
r̂2 + . . .

)

= Q

4πε0

(
q1

r21
r̂1 + q2

r22
r̂2 + q3

r23
r̂3 + . . .

)
,

or

F = QE, (2.3)

where

E(r) ≡ 1

4πε0

n∑
i=1

qi

r2i
r̂i . (2.4)

E is called the electric field of the source charges. Notice that it is a function of
position (r), because the separation vectors ri depend on the location of the field
point P (Fig. 2.3). But it makes no reference to the test charge Q. The electric
field is a vector quantity that varies from point to point and is determined by the
configuration of source charges; physically, E(r) is the force per unit charge that
would be exerted on a test charge, if you were to place one at P .

What exactly is an electric field? I have deliberately begun with what you might
call the “minimal” interpretation of E, as an intermediate step in the calculation
of electric forces. But I encourage you to think of the field as a “real” physical
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FIGURE 2.3

[Q.3.2] Think continuous charge distributions (imagine as the following figure(s)), firstly write the most general
forms of charge distribution expressions and then E for each case.2.1 The Electric Field 63
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2.1.4 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4) assumes that the source of the field
is a collection of discrete point charges qi . If, instead, the charge is distributed
continuously over some region, the sum becomes an integral (Fig. 2.5a):

E(r) = 1

4πε0

∫
1

r2 r̂ dq. (2.5)

If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length
λ, then dq = λ dl ′ (where dl ′ is an element of length along the line); if the
charge is smeared out over a surface (Fig. 2.5c), with charge-per-unit-area σ , then
dq = σ da′ (where da′ is an element of area on the surface); and if the charge fills
a volume (Fig. 2.5d), with charge-per-unit-volume ρ, then dq = ρ dτ ′ (where dτ ′
is an element of volume):

dq → λ dl ′ ∼ σ da′ ∼ ρ dτ ′.

Thus the electric field of a line charge is

E(r) = 1

4πε0

∫
λ(r′)
r2 r̂ dl ′; (2.6)

for a surface charge,

E(r) = 1

4πε0

∫
σ(r′)
r2 r̂ da′; (2.7)

and for a volume charge,

E(r) = 1

4πε0

∫
ρ(r′)
r2 r̂ dτ ′. (2.8)

[Question.4] About the E of the continuous charge distribution system.

Solve the following problems:

Problem 2.5 (about continuous line charge distribution)
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For points far from the line (z � L),

E ∼= 1

4πε0

2λL

z2
.

This makes sense: From far away the line looks like a point charge q = 2λL . In
the limit L → ∞, on the other hand, we obtain the field of an infinite straight
wire:

E = 1

4πε0

2λ

z
. (2.9)

Problem 2.3 Find the electric field a distance z above one end of a straight line
segment of length L (Fig. 2.7) that carries a uniform line charge λ. Check that your
formula is consistent with what you would expect for the case z � L .
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Problem 2.4 Find the electric field a distance z above the center of a square loop
(side a) carrying uniform line charge λ (Fig. 2.8). [Hint: Use the result of Ex. 2.2.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop
of radius r (Fig. 2.9) that carries a uniform line charge λ.

Problem 2.6 Find the electric field a distance z above the center of a flat circular
disk of radius R (Fig. 2.10) that carries a uniform surface charge σ . What does your
formula give in the limit R → ∞? Also check the case z � R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface!
of radius R (Fig. 2.11) that carries a uniform charge density σ . Treat the case z < R
(inside) as well as z > R (outside). Express your answers in terms of the total charge
q on the sphere. [Hint: Use the law of cosines to write r in terms of R and θ . Be
sure to take the positive square root:

√
R2 + z2 − 2Rz = (R − z) if R > z, but it’s

(z − R) if R < z.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a solid
sphere of radius R that carries a uniform volume charge density ρ. Express your
answers in terms of the total charge of the sphere, q . Draw a graph of |E| as a
function of the distance from the center.
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Problem 2.6 (about continuous surface(area) charge distribution)
66 Chapter 2 Electrostatics
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2.2 DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us
how to compute the field of a charge distribution, and Eq. 2.3 tells us what the
force on a charge Q placed in this field will be. Unfortunately, as you may have
discovered in working Prob. 2.7, the integrals involved in computing E can be
formidable, even for reasonably simple charge distributions. Much of the rest of
electrostatics is devoted to assembling a bag of tools and tricks for avoiding these
integrals. It all begins with the divergence and curl of E. I shall calculate the
divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show you
a more qualitative, and perhaps more illuminating, intuitive approach.

Let’s begin with the simplest possible case: a single point charge q, situated at
the origin:

E(r) = 1

4πε0

q

r2
r̂. (2.10)

To get a “feel” for this field, I might sketch a few representative vectors, as in
Fig. 2.12a. Because the field falls off like 1/r2, the vectors get shorter as you go
farther away from the origin; they always point radially outward. But there is a
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FIGURE 2.12

and Problem 2.8 (about continuous volume charge distribution)66 Chapter 2 Electrostatics
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2.2 DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us
how to compute the field of a charge distribution, and Eq. 2.3 tells us what the
force on a charge Q placed in this field will be. Unfortunately, as you may have
discovered in working Prob. 2.7, the integrals involved in computing E can be
formidable, even for reasonably simple charge distributions. Much of the rest of
electrostatics is devoted to assembling a bag of tools and tricks for avoiding these
integrals. It all begins with the divergence and curl of E. I shall calculate the
divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show you
a more qualitative, and perhaps more illuminating, intuitive approach.

Let’s begin with the simplest possible case: a single point charge q, situated at
the origin:

E(r) = 1

4πε0

q

r2
r̂. (2.10)

To get a “feel” for this field, I might sketch a few representative vectors, as in
Fig. 2.12a. Because the field falls off like 1/r2, the vectors get shorter as you go
farther away from the origin; they always point radially outward. But there is a
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in the lecture book.

[Question.5] About the GAUSS’ LAW (or divergence of electric field).

[Q.5.1] Give the most general expression for two forms (integral and differential form) of Gauss’ Law in the cgs
unit system. Why we need to use Gauss’ Law? Write the needed conditions in order to use Gauss’ Law.

[Q.5.2] Solve Problems 2.11, 2.12, and 2.13 in the lecture book.

[Q.5.3] Solve **Problem 2.16** in the lecture book.

[Question.6] About the Potential calculation.

[Q.6.1] Imagine continuous charge distributions, firstly write the most general forms of charge distribution expres-
sions and then V for each case.

[Q.6.2] Solve Example 2.8, Problems 2.24 and 2.25 in the lecture book.

[Question.7] About the Energy of a Continuous Charge Distribution.

Solve Example 2.29 and Problem 2.34 in the lecture book.

[Question.8] About Induced Charges.

Solve Example 2.39 in the lecture book.

[Question.9] About Surface Charge and the Force on a Conductor.

Solve Problems 2.41 and 2.42 in the lecture book.

[Question.10] About Capacitors.

Solve Examples 2.11 and 2.12 and Problem 2.43 in the lecture book.


