ITU PHYSICS ENGINEERING. STUDENT,
nov28, 16
IDENTITY NUMBER :
NAME LASTNAME :
FIZ 411E QUIZ - 6 POINT :
[Question.1] (20/100 Pnts) Please write in the SI units, the Gauss' Law both forms, differential and integral in the presence of the dielectric material.

Hint-1: Think about the displacement field, \boldsymbol{D} and free charge and its density.
[Answer.1] (20/100 Pnts)
With the help of Hint-1,

> Differential form : $\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }}$
> Integral form: $\oint \boldsymbol{D} \cdot d \boldsymbol{a}=Q_{\text {free }}$
[Question.2] (80/100 Pnts) About the capasitance per unit length calculation of cylindrical capasitor.

FIG. 1: coaxial cable
A certain coaxial cable consists of a copper wire, radius a, surrounded by a concentric copper tube of inner radius c and this cable length l, in above figure. The space between is partially filled (from b out to c) with material of dielectric constant, ϵ_{r} as shown.

Find the capacitance per unit length of this cable.
Hint-2: Think about the Gauss' Law in the presence of the dielectric material.
Hint-3: Take the free charge on a length l of the inner conductor as Q.
[Answer.2] (80/100 Pnts)
By using Hint-2 and -3,
in order to find the the capasitance per unit length $\frac{C}{l}$, we should obtain $\frac{Q}{V l}$.
Therefore we should find the displacement electric field, \mathbf{D} and then electric field $\mathbf{E}=\epsilon \mathbf{D}$, and finally potential. Let us start,

$$
\begin{align*}
\oint \boldsymbol{D} \cdot d \boldsymbol{a} & =Q_{\text {free }} \\
D 2 \pi r l & =Q \\
\therefore D & =\frac{Q}{2 \pi r l} . \tag{2}
\end{align*}
$$

\star for $a<r<b$,

$$
\begin{equation*}
\therefore E=\frac{Q}{2 \pi r l \epsilon_{o}} \text {. } \tag{3}
\end{equation*}
$$

\star for $b<r<c$,

$$
\begin{align*}
\mathbf{E} & =\frac{\boldsymbol{D}}{\epsilon} \\
\therefore E & =\frac{Q}{2 \pi r l \epsilon} . \tag{4}
\end{align*}
$$

\star by using the equations (3) and (4), we can obtain the potential as:

$$
\begin{align*}
V & =-\int_{a}^{c} \boldsymbol{E} \cdot d \boldsymbol{l} \\
V & =\left(\int_{a}^{b} \frac{Q}{2 \epsilon_{o} \pi l} \frac{d r}{r}+\int_{b}^{c} \frac{Q}{2 \epsilon \pi} \frac{d r}{r}\right), \\
\therefore V & =\frac{Q}{2 \pi \epsilon_{o} l}\left[\ln \left(\frac{b}{a}\right)+\frac{\epsilon_{o}}{\epsilon} \ln \left(\frac{c}{b}\right)\right] . \tag{5}
\end{align*}
$$

Finally,

$$
\begin{equation*}
\therefore \frac{C}{l}=\frac{Q}{V l}=2 \pi \epsilon_{o}\left[\ln \left(\frac{b}{a}\right)+\frac{\epsilon_{o}}{\epsilon} \ln \left(\frac{c}{b}\right)\right]^{-1} . \tag{6}
\end{equation*}
$$

