ITU PHYSICS ENGINEERING. STUDENT,
dec05, 16
IDENTITY NUMBER :
NAME LASTNAME :
FIZ 411E QUIZ - 7 POINT :
[Question.1] (80/100 Pnts) About a moving charge in the B.
[Question.1.1] (30/100 Pnts) Obtain the linear momentum p expression, for the moving charge in a plane perpendicular to $\mathbf{B}_{\otimes}{ }^{1}$. Let us take the charge as q.

Hint-1: Let us assume that the motion of a charged particle in a magnetic field is circular. Let us take the radius R. Sketch the figure.
[Answer.1.1] (30/100 Pnts)
With the help of Hint-1, let us sketch the figure as:

FIG. 1: cyclotron motion

Then,

$$
\begin{align*}
\mathbf{F}_{\mathbf{B}}= & q(\mathbf{v} \times \mathbf{B}), \\
& \text { and } \\
\mathbf{F}= & m \mathbf{a}, \\
= & m \frac{v^{2}}{R}, \\
& \text { by equaling two forces to each other }, \\
F_{B}= & F \\
q v B= & m \frac{v^{2}}{R}, \\
\therefore p= & q B R . \tag{1}
\end{align*}
$$

here we use $p=m v$.

[^0][Question.1.2] (50/100 Pnts) A particle of charge q enters a region of uniform magnetic field \mathbf{B}_{\otimes}. The field deflects the particle a distance d above the original line of flight, as shown in the following Figure. Is the charge positive or negative? In terms of $\mathrm{a}, \mathrm{d}, \mathrm{B}$ and q , find the linear momentum of the particle.

Field region

FIG. 2: trajectory of the charge q

Hint-2: Use the found expression p in your result for the [Question.1.1].
[Answer.1.2] (50/100 Pnts)
Due to $\boldsymbol{F}_{B}=q \boldsymbol{v} \times \boldsymbol{B}$. Let us take, $\boldsymbol{v}=\hat{\boldsymbol{i}} v$ and $\boldsymbol{B}=-\hat{\boldsymbol{k}} B$, thus the sign of $\boldsymbol{F}=\hat{\boldsymbol{j}} F$ is positive. Then q is the positive charge.

By using Hint-2, we should use the equation (), we need to find R in terms of the values a and d.

FIG. 3: trajectory radius
With the help of above figure, we obtain the $R=\frac{1}{2 d}\left(a^{2}+d^{2}\right)$ by using the pythagoras theorem.
Then we find the expression p as

$$
\begin{equation*}
\therefore p=q B \frac{1}{2 d}\left(a^{2}+d^{2}\right) \text {. } \tag{2}
\end{equation*}
$$

[Question.2] (20/100 Pnts) Please derive the most general expressions of \boldsymbol{F}_{B} for the carrying current line, and surface and volume current densities, $\boldsymbol{I}, \boldsymbol{\kappa}$ and J, respectively.

Hint-3: Use the Lorentz Force law.
Apply $\boldsymbol{I}=\lambda \boldsymbol{v}, \boldsymbol{\kappa}=\sigma \boldsymbol{v}, \boldsymbol{J}=\rho \boldsymbol{v}$ and $d q \sim \lambda d l \sim \sigma d a \sim \rho d \tau$ to the Lorentz Force law.
[Answer.2] (20/100 Pnts)
With the help of Hint-3, by remembering Lorentz Force law $(\mathrm{LFL}), \boldsymbol{F}_{B}=q(\boldsymbol{v} \times \boldsymbol{B})$.

- By applying $\boldsymbol{I}=\lambda \boldsymbol{v}$ and $d q \sim \lambda d l$ to LFL,

$$
\begin{align*}
\int d \boldsymbol{F}_{B} & =\int d q(\boldsymbol{v} \times \boldsymbol{B}), \\
\boldsymbol{F}_{B} & =\int \lambda d l(\boldsymbol{v} \times \boldsymbol{B}), \\
\therefore \boldsymbol{F}_{B} & =\int d l(\boldsymbol{I} \times \boldsymbol{B}) . \tag{3}
\end{align*}
$$

Also, if \boldsymbol{I} and $d \boldsymbol{l}$ both point in the same direction, we can write as

$$
\begin{equation*}
\therefore \boldsymbol{F}_{B}=I \int(d \boldsymbol{l} \times \boldsymbol{B}) . \tag{4}
\end{equation*}
$$

- By applying $\boldsymbol{\kappa}=\sigma \boldsymbol{v}$ and $d q \sim \sigma d a_{\perp}$ to LFL,

$$
\begin{align*}
\int d \boldsymbol{F}_{B} & =\int d q(\boldsymbol{v} \times \boldsymbol{B}) \\
\boldsymbol{F}_{B} & =\int \sigma d a_{\perp}(\boldsymbol{v} \times \boldsymbol{B}) \\
\therefore \boldsymbol{F}_{B} & =\int d a_{\perp}(\boldsymbol{\kappa} \times \boldsymbol{B}) . \tag{5}
\end{align*}
$$

- By applying $\boldsymbol{J}=\sigma \boldsymbol{v}$ and $d q \sim \rho d \tau$ to LFL,

$$
\begin{align*}
\int d \boldsymbol{F}_{B} & =\int d q(\boldsymbol{v} \times \boldsymbol{B}) \\
\boldsymbol{F}_{B} & =\int \rho d \tau(\boldsymbol{v} \times \boldsymbol{B}) \\
\therefore \boldsymbol{F}_{B} & =\int d \tau(\boldsymbol{J} \times \boldsymbol{B}) . \tag{6}
\end{align*}
$$

[^0]: ${ }^{1} \otimes$ shows that the direction of \mathbf{B} is into the page.

