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[Question.1] (80/100 Pnts) About a moving charge in the B.
[Question.1.1] (30/100 Pnts) Obtain the linear momentum p expression, for the moving charge in a plane per-

pendicular to B⊗
1. Let us take the charge as q.

Hint-1: Let us assume that the motion of a charged particle in a magnetic field is circular. Let us take the radius
R. Sketch the figure.

[Answer.1.1] (30/100 Pnts)

With the help of Hint-1,

let us sketch the figure as: 5.1 The Lorentz Force Law 213
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where m is the particle’s mass and p = mv is its momentum. Equation 5.3 is
known as the cyclotron formula because it describes the motion of a particle in a
cyclotron—the first of the modern particle accelerators. It also suggests a simple
experimental technique for finding the momentum of a charged particle: send it
through a region of known magnetic field, and measure the radius of its trajectory.
This is in fact the standard means for determining the momenta of elementary
particles.

I assumed that the charge moves in a plane perpendicular to B. If it starts out
with some additional speed v‖ parallel to B, this component of the motion is
unaffected by the magnetic field, and the particle moves in a helix (Fig. 5.6). The
radius is still given by Eq. 5.3, but the velocity in question is now the component
perpendicular to B, v⊥.

Example 5.2. Cycloid Motion. A more exotic trajectory occurs if we include
a uniform electric field, at right angles to the magnetic one. Suppose, for instance,
that B points in the x-direction, and E in the z-direction, as shown in Fig. 5.7.
A positive charge is released from the origin; what path will it follow?

Solution
Let’s think it through qualitatively, first. Initially, the particle is at rest, so the mag-
netic force is zero, and the electric field accelerates the charge in the z-direction.
As it picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls
the charge around to the right. The faster it goes, the stronger Fmag becomes;
eventually, it curves the particle back around towards the y axis. At this point the
charge is moving against the electrical force, so it begins to slow down—the mag-
netic force then decreases, and the electrical force takes over, bringing the particle
to rest at point a, in Fig. 5.7. There the entire process commences anew, carrying
the particle over to point b, and so on.

Now let’s do it quantitatively. There being no force in the x-direction, the posi-
tion of the particle at any time t can be described by the vector (0, y(t), z(t)); the
velocity is therefore

FIG. 1: cyclotron motion

Then,

FB = q (v ×B) ,

and

F = ma ,

= m
v2

R
,

by equaling two forces to each other ,

FB = F

q v B = m
v2

R
,

∴ p = q B R . (1)

here we use p = mv.

1 ⊗ shows that the direction of B is into the page.
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[Question.1.2] (50/100 Pnts) A particle of charge q enters a region of uniform magnetic field B⊗. The field
deflects the particle a distance d above the original line of flight, as shown in the following Figure. Is the charge
positive or negative? In terms of a, d, B and q, find the linear momentum of the particle.216 Chapter 5 Magnetostatics
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FIGURE 5.8

Problem 5.2 Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at
the origin with velocity

(a) v(0) = (E/B)ŷ,

(b) v(0) = (E/2B)ŷ,

(c) v(0) = (E/B)(ŷ + ẑ).

Problem 5.3 In 1897, J. J. Thomson “discovered” the electron by measuring the
charge-to-mass ratio of “cathode rays” (actually, streams of electrons, with charge
q and mass m) as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields
E and B (mutually perpendicular, and both of them perpendicular to the beam),
and adjusted the electric field until he got zero deflection. What, then, was the
speed of the particles (in terms of E and B)?

(b) Then he turned off the electric field, and measured the radius of curvature, R,
of the beam, as deflected by the magnetic field alone. In terms of E , B, and R,
what is the charge-to-mass ratio (q/m) of the particles?

5.1.3 Currents

The current in a wire is the charge per unit time passing a given point. By def-
inition, negative charges moving to the left count the same as positive ones to
the right. This conveniently reflects the physical fact that almost all phenomena
involving moving charges depend on the product of charge and velocity—if you
reverse the signs of q and v, you get the same answer, so it doesn’t really mat-
ter which you have. (The Lorentz force law is a case in point; the Hall effect
(Prob. 5.41) is a notorious exception.) In practice, it is ordinarily the negatively
charged electrons that do the moving—in the direction opposite to the electric
current. To avoid the petty complications this entails, I shall often pretend it’s the
positive charges that move, as in fact everyone assumed they did for a century
or so after Benjamin Franklin established his unfortunate convention.5 Current is
measured in coulombs-per-second, or amperes (A):

1 A = 1 C/s. (5.12)

5If we called the electron plus and the proton minus, the problem would never arise. In the context of
Franklin’s experiments with cat’s fur and glass rods, the choice was completely arbitrary.

FIG. 2: trajectory of the charge q

Hint-2: Use the found expression p in your result for the [Question.1.1].

[Answer.1.2] (50/100 Pnts)

Due to FB = q v ×B. Let us take, v = îv and B = −k̂B, thus the sign of F = ĵF is positive. Then q is the
positive charge.

By using Hint-2, we should use the equation (), we need to find R in terms of the values a and d.

Chapter 5

Magnetostatics

Problem 5.1

Sincev x B points upward, and that is also the direction of the force, q must be I positive. I To findR, in
terms of a and d, use the pythagorean theorem:

a2 + d2
(R - d)2 + a2 = R2 =? R2 - 2Rd + d2 + a2 = R2 =?R = .2d

p = qBR = IqB (a2 +~)2d {

r"'",,~

RV
The cyclotron formula then giyes

Problem 5.2

The general solution is (Eq. 5.6):

y(t) = CI cos(u;t) + C2 sin(u;t) + ~t + C3; z(t) = C2 cos(u;t) - CI sin(u;t) + C4.

(a) y(O) = z(O) = OJ y(O) = E/ Bj i(O) = O. Use these to determine CI, C2, C3, and C4.

y(O)= 0 =? CI + C3 = OJ y(O) = u;C2 + E/B = E/B =? C2 = OJ z(O) = 0 =? C2 + C4 = 0 =? C4 = 0;

i(O)= 0 =? CI = 0, and hence also C3 = O.So I y(t) =Et/ B; z(t) = 0.1 Does this make sense? The magnetic
forceis q(v x B) ==-q(E/B)Bz ==-qE, which exactly cancels the electric force; since there is no net force,
theparticle moves in a straight line at constant speed. ..(

(b) Assumingit starts from the origin, so C3 = -CI, C4 = -C2, we have i(O) = 0 =? CI = 0 =? C3 = 0;

y(O)= 2~ =? C2u; + ~ = 2~ =? C2 = - 2~B = -C4; y(t) = - 2~B sin(u;t) + ~ t;
E E E. E

z(t) = - 2u;B cos(u;t) + 2u;B' or y(t) = 2u;B [2u;t- sm(u;t)]; z(t) = 2u;B [1 - cos(u;t)]. Let (3 == E/2u;B.

Then y(t) = (3 [2u;t - sin(u;t)]; z(t) = (3 [1 - cos(u;t)]; (y - 2(3u;t) = -(3 sin(u;t), (z - (3) = -(3 cos(u;t) =?
(y- 2(3VJt)2+ (z - (3)2= (32. This is a circle of radius (3 whose center moves to the right at constant speed:
Yo=2(3VJt; Zo = (3.

. . E E E E E
(c) z(O) = y(O) = B =? -ClUJ = B =? CI = -C3 = - u;B j C2u; + B = B =? C2 = C4 = O.
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FIG. 3: trajectory radius

With the help of above figure, we obtain the R = 1
2d (a2 + d2) by using the pythagoras theorem.

Then we find the expression p as

∴ p = q B
1

2d
(a2 + d2) . (2)
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[Question.2] (20/100 Pnts) Please derive the most general expressions of FB for the carrying current line, and
surface and volume current densities, I, κ and J, respectively.

Hint-3: Use the Lorentz Force law.

Apply I = λ v, κ = σ v ,J = ρ v and dq ∼ λ dl ∼ σ da ∼ ρ dτ to the Lorentz Force law.

[Answer.2] (20/100 Pnts)

With the help of Hint-3, by remembering Lorentz Force law(LFL), FB = q (v ×B).

• By applying I = λ v and dq ∼ λ dl to LFL,∫
dFB =

∫
dq(v ×B) ,

FB =

∫
λ dl(v ×B) ,

∴ FB =

∫
dl(I ×B) . (3)

Also, if I and dl both point in the same direction, we can write as

∴ FB = I

∫
(dl×B) . (4)

• By applying κ = σ v and dq ∼ σ da⊥ to LFL,∫
dFB =

∫
dq(v ×B) ,

FB =

∫
σ da⊥(v ×B) ,

∴ FB =

∫
da⊥(κ×B) . (5)

• By applying J = σ v and dq ∼ ρ dτ to LFL,∫
dFB =

∫
dq(v ×B) ,

FB =

∫
ρ dτ(v ×B) ,

∴ FB =

∫
dτ(J ×B) . (6)


