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5. PROPELLER THEORIES 

 
a) Momentum Theory 

 

It was originally intended to provide an analytical means for evaluating ship 

propellers (Rankine 1865 & Froude 1885). Momentum Theory is also well known as 

Disk Actuator Theory. Momentum Theory assumes that 

 

 the flow is inviscid and steady (ideal flow), therefore the propeller does not 

experience energy losses due to frictional drag 

 also the rotor is thought of as an actuator disk with an infinite number of 

blades, each with an infinite aspect ratio 

 the propeller can produce thrust without causing rotation in the slipstream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the basic thrust equation, we know that the amount of thrust depends on the 

mass flow rate through the propeller and the velocity change through the propulsion 

system. In the above figure the flow is proceeding from left to right. Let us denote the 

subscripts "A and C" for the stations assumed to be far upstream and downstream of 

the propeller respectively and the location of the actuator disc by the subscript "B". 

The thrust (T) is equal to the mass flow rate (
.

m ) times the difference in velocity (V).  
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There is no pressure-area term because the pressure at the C is equal to the pressure at 

A. 

 

The power PD absorbed by the propeller is given by: 
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However delivered power PD is also equal to the work done by thrust force: 

 

BD TVP   (3) 

 

By equating Eqs. (2) and (3), the velocity at the propeller position becomes: 
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If VB and VC are expressed in terms of the velocity VA, then: 
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where ua and ua1 are known as the increases in the velocities at the propeller disc 

position B and C. 

 

As a consequence the slipstream must contract between the conditions existing far 

upstream and those existing downstream in order to satisfy the continuity equation: 
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We can obtain that: 

 

2

1

2

22

D
uV

uV
D

D
V

uV
D

aA

aA

C

A

aA

A









 (7) 

 

The law of conservation of momentum equates the force exerted on the fluid with the 

net outflow of momentum. The control volume is the stream tube from AA to AC. The 

mass per unit time through AA is VAAA and the momentum inflow is VA
2
AA. 

Similarly the momentum outflow through AC can be written and the conservation of 

momentum requires that: 
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Using Eq. (7) this can be written as: 
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The thrust can also be written as T=pA 

 

We can use Bernoulli's equation to relate the pressure and velocity upstream and 

downstream of the propeller disk, but not through the disk. For the upstream and 

downstream of the disk, respectively: 
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pA=pC 

 

Subtracting the above equations gives: 
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A second formulation for the propeller thrust is: 
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Then combining Eqs. (9) and (12) it is derived that: 

 

aa uu 21   (13) 

 

This shows that half of the acceleration takes place before the propeller disc and the 

remaining half after the propeller disc. In other words the axial induced velocity at the 

propeller (ua) is the half the axial induced velocity at the C. 

 

The relation between the propeller thrust and the axial induced velocity is: 
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The propeller thrust is made non-dimensional with the propeller area and the inflow 

velocity VA: 

 

22

2

1

4
A

T

VD

T
C




  
(15) 

 



 4 

where CT is a thrust coefficient indicating the propeller loading. Eq. (15) becomes 
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The induced velocity in the slipstream represents energy supplied to the flow behind 

the propeller. This is due to the fact that the fluid gives way when a thrust is exerted 

to it. The loss of the energy is reflected in an efficiency which is lower than 1. To 

formulate the efficiency the propeller disk moves with a velocity VA and exerts a 

force T. The power is TVA. In the slipstream a velocity 2ua is present. With the mass 

flow expressed as the mass flowing through the propeller disk, which is equal to that 

flowing through the slipstream, this represents an energy of: 
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The efficiency of the propeller can be written as: 
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By inserting Eq. (17) into (18) gives: 
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(19) 

 

This represents the maximum efficiency which is theoretically possible in an inviscid 

flow with a propeller not introducing any rotation in the slipstream. It is therefore 

called the ideal efficiency. 

 

 

b) Blade Element Theory 

 
The primary limitation of the momentum theory is that it provides no information as to 

how the rotor blades should be designed so as to produce a given thrust. Also, profile 

drag losses are ignored. The blade-element theory is based on the assumption that 

each element of a propeller or rotor can be considered as an airfoil segment. Lift and 

drag are then calculated from the resultant velocity acting on the airfoil, each element 

considered independent of the adjoining elements. The thrust and torque of the rotor 
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are obtained by integrating the individual contribution of each element along the 

radius. 

 

 

 

 

 

 

 

 

where 

 dT: Trust 

 dQ: Torque 

 dL: Lift 

 dD: Drag 

 VA: Advanced velocity 

 r: Rotational speed 

 VR: Resultant velocity 

 : Angle of attack 

: Hydrodynamic pitch angle 

 

VR is defined as: 
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The thrust force of a blade can be obtained by integrating the dT over the radius R and 

the total thrust force is found by the multiplication of number of blades by the blade 

thrust force. 
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Similarly total torque can be obtained as: 
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The propeller efficiency: 
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c) Profile Characteristics 
 

A characteristic feature of a profile is to generate lift (L). This profile (lifting surface) 

in a flow also generates drag (D) and pitching moment (M). The lift is caused by the 

fact that the flow is forced to leave the profile smoothly at the tail. This is in turn an 

effect of viscosity which prevents the velocities from becoming extremely large at the 

tail. This condition is called Kutta condition. Basically it is a tangential flow at the 

tail, or equal pressure at both sides of the tail. 

 

Consider a profile moving at a certain angle of attack through the fluid as in the figure 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is an inflow velocity at the angle of attack . As a result of the inflow there is a 

certain pressure distribution over the surface of the profile. When the pressure p0 in 

the undistributed flow is changed, the pressure over the surface of the profile will also 

change with the same amount. The pressure is made non-dimensional as: 
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In the flow the Bernoulli Law is valid so the pressure distribution at the surface of the 

profile can be related to the local velocity v by: 
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The effect of the immersion h is neglected, because the profile is assumed to be nearly 

horizontal and a small angle of attack. The above equation can be written as: 

 

2)(1
V

v
C p   (25) 

 

V 

-Cp 

x/c 

1 

-1 

p0 

suction side 

pressure side 



 7 

 

The above equation shows that two stagnation points exist where the local velocity is 

zero. These stagnation points are called forward and rear stagnation points. Typical 

pressure distribution on a profile is shown in the above figure. 

 

The pressure difference between suction side and pressure side is the loading of the 

profile. The integral of this loading distribution over the chord gives the lift force L on 

the profile. The lift coefficient can be given as: 
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where S is an area (span times chord length). For a profile the lift coefficient per unit 

span is also used where S is replaced by the chord length c. A typical angle of attack 

versus CL is shown in the figure below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in the above figure the lift coefficient CL crosses the x-axis at the zero 

lift angle (0) where the profile generates no lift. This angle is determined by the 

camber of the profile and calculated as 
c

fmax

0

2
 . The slope of the lift curve (



 LC
) 

is 2 for thin profiles. So that the lift coefficient of a thin profile can be written as: 
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At higher angles of attack the lift curve deviates from the linear theory and flow 

separation and thrust breakdown occur. 

 

The term ideal angle of attack, i, is the angle of attack at which pressure around the 

leading edge is symmetrical In this case the flow direction at the leading edge is 

exactly in the direction of camber line. It is very important because at this angle the 

pressure close to the leading edge is maximum. Propeller blade sections are generally 

designed to operate at the ideal angle of attack. 

CL 
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The drag force is caused by the friction along the surface of the profile and is 

expressed in non-dimensional terms as: 
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d) Profile Series 
 

National Advisory Committee for Aeronautics (NACA) produced and tested a large 

number of profiles (aerofoils). All data of NACA foils are given in appropriate tables 

for two main forms: basic symmetrical thickness forms and mean line forms. 

Thickness and velocity distributions are given at zero lift angles for the basic 

symmetrical thickness forms and at ideal angles of attack for the mean line forms. 

 

A foil desired by a designer’s requirements can be chosen by combining a mean line 

and a thickness distribution that is perpendicular to the mean line or to the chord line 

as in practice. 

 

According to NACA procedure, the pressure distribution around a NACA foil can be 

estimated as follows: 

 

1- The velocity distribution (v/V) over the basic thickness form at zero lift angle 

is directly taken from the appropriate NACA table if the actual or desired foil 

has the same ratio of maximum thickness to chord length t/c given in the 

NACA series. If it does not, the values of (v/V) can be calculated using a 

linear scaling relationship given by the NACA: 
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where t1 is the nearest thickness ratio given in the series and t2 is the actual or desired 

thickness ratio. 

 
 

 

 
Figure 1 Symmetrical foil section at zero lift angle of attack. 
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2- Values of the load distribution of the mean line at its ideal angle of attack, 

(v/V), are directly read from the appropriate NACA table if the actual foil 

has the same camber to chord ratio f/c given in the series. If it does not have 

the same camber ratio the values of ideal lift coefficient CLi, ideal angle of 

attack i, section moment coefficient about the quarter-chord point cmc/4 and 

v/V distribution are scaled by a camber scale factor Sc: 

 

S =
(f / c) of the actual foil

(f / c) of the NACA series
               c  

 

 
 

 

 
 

3- In this step, the pressure/velocity values devised in the step 1 and 2 are 

combined to obtain the required values for cambered foil at ideal angle of 

attack. (+) sign represents the upper part and (-) sign represents the lower part. 

 
 

 

 
 

4- In this step, the values of the velocity increments v va /  (additional load 

distribution) induced by changing angle of attack are calculated such that: if 

the actual foil does not have the same thickness ratio given in the NACA 

series, the values of velocity increment va/V are scaled by interpolating  the 

values of  va/V in the NACA series by following relationship: 
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where subscripts 1 represents the NACA data for the thickness ratio given in the 

NACA series smaller than the thickness of the actual foil, 2 represents the actual foil 

and 3 represents the NACA data for the thickness ratio given in the NACA series 

bigger than the thickness of actual foil. 

 

 

 

 
 

These values of velocity increment in the NACA series were originally calculated at 

an additional lift coefficient of approximately unity. It must, therefore, be noted that 

they must be scaled by the additional scale factor given by: 
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where CL is the desired lift coefficient, CLi is the ideal lift coefficient, CLg is the lift 

coefficient for which the values of va/V were originally calculated,  is the desired 

angle of attack, i is the ideal angle of attack, g is the angle of attack for which the 

values of va/V were originally calculated. 

 

5- Velocity distributions at upper and lower parts at an angle of attack are 

calculated by following relationships: 
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where the subscript U represents upper part and the subscript L represents lower part 

of foil. 
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6- Pressure distribution in terms of non-dimensional pressure coefficient Cp is 

calculated on both sides: 
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NACA has families of sections: 

 

a) 4-digit sections 

b) 5-digit sections 

c) 1 – series 

d) 6 – series 

e) 7 – series 

 

For example: NACA four digit sections are designated as: 

 

NACA 2415 

 

First integer (2) denotes the maximum value of the mean line ordinate in percentage 

of the chord 100(fmax/c). 

 

Second integer (4) denotes the position of maximum camber (fmax) in tenths of the 

chord from the leading edge. 

 

Las two integers (15) denote the maximum thickness in percentage of the chord 

100(tmax/c). 

 

In this case NACA 2415 section has 2 per cent camber at 0.4 of the chord from the 

leading edge and 15 per cent thickness. 

 

 

e) Lifting Line Theory 
 

A simple solution for unswept three-dimensional wings can be obtained by using 

Prandtl's lifting line model. For incompressible, inviscid flow, the wing is modelled as 

a single bound vortex line located at the 1/4 chord position and an associated shed 

vortex sheet. 
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The span-wise lift distribution is assumed to be elliptical with a small modification 

due to wing planform geometry. The assumed vortex line strength is thus a Fourier 

series approximation. 

 

 
(29) 

 

The required strength of the distribution coefficients (An) for a given geometry and set 

of free-stream conditions can be calculated by applying a surface flow boundary 

condition. The equation used is based on the usual condition of zero flow normal to 

the surface. For 3-D wings the condition is applied at several span-wise sections by 

matching flow and surface angles. The local flow angle of incidence for a 2-D section 

of the wing must be equal to the sum of the wing's angle of attack, the section twist 

and the downwash induced flow angle. This downwash component is caused by the 

induced flow from the trailing vortex sheet. 

 

 
 

2-D = - i + t 

i= wi/V


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where  is the 3-D wing angle of attack, t is the wing twist angle and wi is the 

velocity induced by trailing vortex sheet. 

 

The vortex strength distribution in the trailing sheet will be a function of the changes 

in vortex strength along the wing span. The mathematical function describing the 

vortex sheet strength is thus obtained by differentiating the bound vortex distribution. 

 
(30) 

A solution for the magnitude of the Fourier coefficients A1, A2, A3... is obtained by 

firstly predicting the downwash velocity induced on the wing by the trailing sheet. 

 

 

(31) 

 

Then find the 2-D section lift coefficient as a function of the local flow incidence and 

the bound vortex strength at this span location. 

 

 
(32) 

 

where ao is the section lift curve slope (Cl/ ),  o is the zero lift angle and c is the 

section chord. 

 

Rearranging and substituting for the local angle of incidence. 

 

 
(33) 

Substituting for  and i in terms of the Fourier series approximations then a final 

boundary condition equation is obtained. The equation contains the unknown 

coefficients and the known geometric properties of the wing. 

 

 

(34) 

 

If a fixed number of coefficients (A1,A2,A3,A4...AN) is used then a set of simultaneous 

linear equations will be obtained by applying the above equation at "N" spanwise 

locations. A cosine distribution of spanwise locations should be used to match the 

assumed wing loading distribution. The number of coefficients used will determine 

the accuracy of the solution. If the wing loading is highly non-elliptical then a larger 

number of coefficients should be included. The solution for coefficients 

(A1,A2,A3,A4...AN) is obtained by the reduction of the resulting matrix of equations. 

 

It should be noted that in cases were the wing loading is symmetric then even 

coefficients (A2,A4,A6,....) will be zero and can be deleted from the calculation. 

 

The lift coefficient for the wing at a given angle of attack will be obtained by 

integrating the spanwise vortex distribution. 
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(35) 

 

so that CL =  .AR.A1, where AR is wing aspect ratio. 

The downwash velocity induced at any span location can be calculated once the 

strength of the wing loading is known. The variation in local flow angles can then be 

found. A consequence of this downwash flow is that the direction of action of each 

section's lift vector is rotated relative to the free-stream direction. The local lift 

vectors are rotated backward and hence give rise to a lift induced drag. By integrating 

the component of section lift coefficient that acts parallel to the free-stream across the 

span, the induced drag coefficient can be found. 

 

 

(36) 

so that CDi =  .AR. (nAn
2
) 

 

No real information about pitching moment coefficient can be deduced from lifting 

line theory since the lift distribution is collapsed to a single line along the 1/4 chord. 

Special case of elliptical loading: 
 

If the wing planform is elliptical, then it can be assumed that the wing load 

distribution is also a purely elliptical function. 

 

 (y) = 4sV A1sin( ) = osin( ) (37) 

 

In this case a single general boundary condition equation results containing only one 

unknown, the vortex line strength at the wing root. The exact solution of this equation 

leads to the following simple answer for lift coefficient and induced drag coefficient. 
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o(2D) = o(3D) 

 

 

f) Lifting Surface Theory 
 

If the aspect ratio (
c

b

A

b
AR 

2

) of blades is high, and if the rake and skew is zero 

(or at least small), the lifting line theory is applicable. The lifting line method works 

well for conventional airplane propellers, which have straight radial blades of very 
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high aspect ratio. However, it is not suitable for marine propellers. Therefore lifting 

surface theory was introduced to overcome the above difficulties.  

 

In the lifting surface theory, the real propeller geometry is dealt. The blade mean 

surface is defined in terms of a camber distribution. Thickness is added symmetrically 

with respect to mean line at each radius. 

 

 

 

 

g) Boundary Element Methods 
 

Boundary element methods, which are also known as “Panel Methods”, are based on 

the approach developed by Hess and Smith (1967). In these methods, the surfaces of 

propeller blades and hub or foil surface are discretised by a number of small 

quadrilateral panels having constant source and doublet distributions. The trailing 

vortex sheet is also represented by similar quadrilateral panels having constant 

doublet distributions. The strengths of the source and doublet distributions are 

determined by solving the boundary value problems at each of the control points, 

which are located on each panel. They are inherently “Non-linear” with either the 

thickness or the angle of attack, since they make no assumption about the magnitude 

of these quantities. On the other hand, the panel methods become very expensive, in 

terms of computing time, in the case of three-dimensional geometries (marine 

propellers) as the number of panels are increased tremendously compared to the 2-D 

foils. 

 

 
 


