## Dr. Helen Lang

Dept. of Geology \& Geography
West Virginia University

## SPRING 2009

## GEOLOGY 585: <br> OPTICAL MINERALOGY \& PETROLOGY

## Symmetry and Mineral Optics

- Optical properties obey and reflect the symmetry of the crystal structure


## Minerals are Grouped into Six

 Crystal Systems based on SymmetrySystem

- Isometric (Cubic) System
- Hexagonal System
- Tetragonal System
- Orthorhombic System
- Monoclinic System
- Triclinic System

Characteristic Symmetry
four 3 or $\overline{3}$
one $6, \overline{6}, 3$ or $\overline{3}$
one 4 or $\overline{4}$
three 2 and/or $m$
one 2 and/or $m$
1 or 1

## Crystallographic Axes

- Reference axes
- Conventional ways to hold and refer to faces on crystals
- Different convention for each system


## Crystallographic Axes: Isometric System

- Three perpendicular axes
- Coincide with three 4-fold or 2-fold axes
- All equal length
- Called $a_{1}, a_{2}, a_{3}$
- Garnet, halite, pyrite and
 fluorite are isometric


## Crystallographic Axes: Tetragonal System

- Must have one 4 or 4-bar axis
- Three perpendicular axes
- Vertical axis, c, coincides with 4 or 4-bar axis
- One axis, c , is longer or shorter than other two, $a_{1}$ and $a_{2}$, which are equal


## Crystallographic Axes: Orthorhombic System

- Has three 2-fold axes and/or one mirror plane
- Three perpendicular axes coincide with 2-fold axes or are perpendicular to mirror planes
- All different lengths
- called a, b, c



## Crystallographic Axes: Monoclinic System

- Has one 2-fold axis or mirror
- All axes different lengths
- Called a, b, c
- b axis coincides with 2-fold axis or is $\perp$ mirror plane
- $\mathbf{c}$ is parallel to long edges

- a slants down to the front
- $\mathrm{a} \perp \mathrm{b}, \mathrm{b} \perp \mathrm{c}$, angle between a and $c>90^{\circ}$


## Crystallographic Axes: Triclinic System

- No perpendicular axes
- All different lengths
- Called a, b, c



## There are 32 ways in which symmetry operations can be combined

- 32 point groups or crystal classes
- Hermann-Mauguin (H-M) Symbols are a simple numeric way to represent the symmetry of each class
- Three-place symbols
- Different content for each system
- isometric
- hexagonal
- tetragonal
- orthorhombic

$\qquad$
- monoclinic
- triclinic


## Summary of the Crystal Systems

| CRYSTAL SYSTEM | CHARACTERISTIC <br> SYMMETRY | AXIAL <br> RELATIONSHIPS | PLACES IN THE H-M SYMBOL | CRYSTAL CLASSES | OPTICAL <br> CLASSIFICATION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Isometric | four 3 or $\overline{3}$ | $\begin{aligned} & a_{1}=a_{2}=a_{3} \\ & \alpha^{*}=\beta=\gamma=90^{\circ} \end{aligned}$ | 1-symmetry of a axes 2-3 or $\overline{3}$ (diagonal) 3-other (edge to edge) | $\begin{aligned} & \mathbf{4} / \boldsymbol{m} \overline{\mathbf{3}}^{\mathbf{2} / \boldsymbol{m}^{* *}} \\ & \overline{4} 3 \mathrm{~m}, 432,2 / m \\ & 23 \end{aligned}$ | Isotropic |
| Hexagonal | one $6, \overline{6}, 3$ or $\overline{3}$ | $\begin{aligned} & a_{1}=a_{2}=a_{3} \neq c \\ & \mathrm{a} \wedge c=90^{\circ} \\ & \mathrm{a}_{1} \wedge \mathrm{a}_{2}=120^{\circ} \\ & \mathrm{a}_{2} \wedge \mathrm{a}_{3}=120^{\circ} \end{aligned}$ | 1-symmetry of $\mathbf{c}$ axis 2-symmetry of a axes 3-other (between a axes) | $\begin{aligned} & \hline \mathbf{6} / \boldsymbol{m}^{\mathbf{2} / \boldsymbol{m}^{2} / \boldsymbol{m},} \\ & \overline{6} 2 \mathrm{~m}, 6 \mathrm{~mm}, 622, \\ & 6 / m, \overline{6}, 6, \overline{3} \\ & 2 / m, 3 \mathrm{~m}, 32, \overline{3}, 3 \\ & \hline \end{aligned}$ | Uniaxial |
| Tetragonal | one 4 or $\overline{4}$ | $\begin{aligned} & a_{1}=a_{2} \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ | 1-symmetry of $\mathbf{c}$ axis 2-symmetry of a axes 3-other (between a axes) | $\begin{aligned} & \mathbf{4} / \boldsymbol{m}^{\mathbf{2} / \boldsymbol{m}^{2} / \boldsymbol{m},} \\ & 42 \mathrm{~m}, 4 \mathrm{~mm}, 422, \\ & 4 / \mathrm{m}, \overline{4}, 4 \\ & \hline \end{aligned}$ | Uniaxial |
| Orthorhombic | three 2 and/or m | $\begin{aligned} & \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \mathrm{c}>\mathrm{b}>\mathrm{a} \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ | 1-symmetry of a axis 2-symmetry of $\mathbf{b}$ axes 3-other (between caxes) | $\mathbf{2}_{222, \mathrm{~mm} 2}^{\mathbf{2} / \boldsymbol{m}^{2} / \boldsymbol{m}}$ | Biaxial |
| Monoclinic | one 2 and/or one m | $\begin{aligned} & \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha=\gamma=90^{\circ} \\ & \beta>90^{\circ} \end{aligned}$ | 1 -symmetry of $\mathbf{b}$ axis | $\mathbf{2} / \mathrm{m}, 2, \mathrm{~m}$ | Biaxial |
| Triclinic | 1 or $\overline{1}$ | $\begin{aligned} & \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha=\beta>90^{\circ} \\ & \gamma>\text { or }<90^{\circ} \end{aligned}$ | $1-1$ or $\overline{1}$ | $\overline{\mathbf{1}}, 1$ | Biaxial |
|  |  |  |  |  |  |
| * | $\alpha=\mathrm{b} \wedge \mathrm{c}, \beta=\mathrm{a} \wedge \mathrm{c}, \gamma=\mathrm{a} \wedge \mathrm{b}$ |  |  |  |  |
| ** | The holohedral or highest symmetry class in each system is shown in bold letters |  |  |  |  |

## The Petrographic Microscope

- Plane-polarized light from below (polarizer)
- EW or NS? biotite is darkest parallel to polarizer
- Removable "analyzer" above sample
- Rotatable stage
- Various microscopes


## The Petrographic


(polarizing) Microscope Analyzer (NS)

Objectives Rotating Stage
Polarizer (EW, perpendicular to Analyzer)

New Leica Microscopes


Older Olympus Microscopes

## Interaction of light with minerals

- Polarized light travels right through isotropic minerals, and travels at the same speed in all directions
- In anisotropic minerals, polarized light is split into two rays vibrating at $90^{\circ}$ to each other in two special "allowed vibration directions," the two rays travel at different speeds


## Light passing thru an anisotropic mineral

If recombined wave is perpendicular to Analyzer, no light passes, mineral is dark


If recombined wave is parallel to the Analyzer, all light passes, mineral appears brightest
"fast" ray, long $\lambda$

## "slow" ray

 short $\lambda$
## Lagging of the "slow" ray behind the "fast" ray is called Retardation

- When the two rays recombine at the Analyzer, they interfere (constructively or destructively) with each other and there is generally a component of light parallel to the Analyzer
- Different colors of light experience different amounts of Retardation


## Retardation and Interference



Quartz Wedge between Crossed Polaroid Films in Monochromatic ( $\mathrm{Na}_{\mathrm{D}} ; \lambda=590 \mathrm{~nm}$ ) Light<br>Note constructive and destructive interference

## Interference Colors


(Phillips, 1971)

## Interference Colors depend on:

- The amount of retardation caused by the mineral in a certain direction
- How anisotropic is the mineral?
$-\delta$, maximum difference in refractive index
- And the thickness of the mineral (typically a 30 $\mu \mathrm{m}$ thin section)


## Interference Colors



## Properties viewed in Planepolarized light (PPL)

- Relief (relative)
- Becke lines - bright line moves toward medium with higher refractive index (distance increased)
- Color
- Pleochroism
- Grain shape
- Cleavages
- Alteration
- Others?


## Properties in Cross-polarized light (XPL)

- Birefringence
- None, zero $\rightarrow$ isotropic
- Interference colors $\rightarrow$ anisotropic
- How high? low, medium, high, extremely high
- Extinction
- parallel extinction?
- extinction angle?
- Others?


## Optical Groupings

- Isotropic
- Same properties in all directions
- Light travels at the same speed in all directions
- Isometric symmetry
- Uniaxial
- One unique axis, one direction in which the mineral appears isotropic $=$ optic axis $=c$ axis
- Tetragonal or Hexagonal symmetry
- Biaxial
- Three principal refractive indices, two directions in which the mineral appears isotropic = optic axes - angle between them is 2 V
- Orthorhombic, Monoclinic or Triclinic symmetry


## Uniaxial and Biaxial Optics

- David Hirsch - Uniaxial Indicatrix Movie
- http://almandine.geol.wwu.edu/~dave/courses/40 7resources/UniPosIndicatrix.mov
- David Hirsch - Biaxial Indicatrix Movie
- http://almandine.geol.wwu.edu/~dave/courses/40 7resources/BiaxialNegativelndicatrix.mov
- A really good Optical Mineralogy course
- Dr. Greg Finn, Brock University, Canada
- http://www.brocku.ca/earthsciences/people/gfinn/ optical/222lect.htm


## Uniaxial Minerals

## The optic axis

 (direction along which mineral appears isotropic) is always parallel to c$\omega$, the ordinary ray, vibrates perpendicular to the c axis
$\varepsilon$, the extraordinary ray, vibrates parallel to the c axis


Positive

$$
\begin{gathered}
\varepsilon>\omega \\
\mathrm{V}_{\varepsilon}<\mathrm{V}_{\omega}
\end{gathered}
$$

$\omega$ is fast ray
Quartz
Leucite
Zircon
Rutile


Negative $\varepsilon<\omega$
$\mathrm{V}_{\varepsilon}>\mathrm{V}_{\omega}$
$\omega$ is slow ray
Beryl
Tourmaline
Apatite
Calcite, Dolo
Corundum

## Uniaxial Indicatrix

$Z=$ optic axis $=c$-axis


Circular Section
Radius $=n_{\text {is }}$


Principle Sections
Radii $=n_{x}$ and $n_{a}$

Unlaxial Positive Indicatrix
Elongated along the optc axls c-axls = optc axls c -ax|s $=\mathrm{Z}$ Indlcatrlx axls

Greg Finn-Brock U.
$X=$ optic axis $=c$-axis

## Determining the Optic Sign

- Obtaining an interference figure
- Conoscopic Light - microscope setup
- Uniaxial Minerals
- Centered Optic Axis figure
- Looking down the c-axis
- Biaxial Minerals
- Several options, Bxa, Bxo or Optic Axis (OA)
- I suggest Optic Axis figure, easiest to find likely grains


## Uniaxial Figure \& Optic Sign

- if $\varepsilon>\omega, \omega$ is the "fast ray" and the optic sign is negative
- if $\omega>\varepsilon, \varepsilon$ is the slow ray and the optic sign is positive


## Uniaxial Mineral - Conoscopic Light

Convergent llght passes through the mineral, with the resulting Indleatrlx, and exlts with a vibratlon pettern which is symmetrical about the melatops. Extracrdimary rays (c) vibrate along radial lines from the melatope and ordnary rays (in) vibrate tangentlally to the clrcular isechromes.

Where the vibratlon dlrectlons of the on and 8 rays are parallel to the polarization directions the interference figure appears black and forms the lsogyres.


## Uniaxial sign and interference figure

## Uniaxial Interference Figure (centered)



## Biaxial Minerals

- $X$ - vibration direction of fastest ray
- $\alpha$ - refractive index of light vibrating in $X$ direction
- $\alpha$ - lowest refractive index
- Y - vibration direction of light traveling along OA
- $\beta$ - refractive index of light vibrating $\perp$ to Optic Axis
- $\beta$ - intermediate refractive index
- $\mathbf{Z}$ - vibration direction of slowest ray
- $\gamma$ - refractive index of light vibrating in $\mathbf{Z}$ direction
- $\gamma$ - highest refractive index
$\alpha<\beta<\gamma$ (always) birefringence $=\delta=\gamma-\alpha$ (always)


## Biaxial

 IndicatrixThe Optic Axas (OA) are perpendicular to the Circular Sections OA and lie within the $X Z$ plane of the indicatrix. This plane is the Optic Axlal Plane and Is at right angles to the $Y$ indicatrix axis (Optle Normal).

The Optlc Axes ars symmetrical about OA the $Z$ indicatrix axis. The angle bstwesn the Optic Axes is the Optic Angle or 2 V angle.

Circular Section

Clrcular Sectlon

The two Clreular Sectlons, with radius
$=\mathbf{n}_{\overline{\mathrm{B}}}$ Intersect along the Y indicatrix axis.

## Greg Finn-Brock U.

## Biaxial Relationships



Biaxial Positive (+) $\beta$ closer to $\alpha$ $Z$ is Bxa

(a)

Biaxial Negative (-)
$\beta$ closer to $\gamma$ X is Bxa

## Determining Optic sign and 2V

- Conoscopic light
- Several possibilities, Bxa, Bxo and OA
- Optic Axis figure easiest to use
- OA, easiest to pick likely grains
- looking down Optic Axis, grain appears isotropic
- pick lowest birefringence grain you can find
- rotate stage, you want one that stays black/gray
- Melatope stays in center, isogyre spins around


## Biaxial Optic Axis Figure

## Biaxial Optic Axis Figure (centered)

(at $45{ }^{\circ}$ from extinction)


OPTIC AXIS FIGURE - CURVATURE OF ISOGYRES AS A FUNCTION OF 2V


## Summary of the Crystal Systems

| CRYSTAL <br> SYSTEM | CHARACTERISTIC <br> SYMMETRY | AXIAL <br> RELATIONSHIPS | PLACES IN THE H-M SYMBOL | CRYSTAL <br> CLASSES | OPTICAL <br> CLASSIFICATION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Isometric | four 3 or $\overline{3}$ | $\begin{aligned} & a_{1}=a_{2}=a_{3} \\ & \alpha^{*}=\beta=\gamma=90^{\circ} \end{aligned}$ | 1-symmetry of a axes 2-3 or $\overline{3}$ (diagonal) 3-other (edge to edge) | $4 / m^{3} \overline{\mathbf{3}}^{\mathbf{2}} \mathrm{m}^{* *}$, <br> $\overline{4} 3 \mathrm{~m}, 432,2 / m \overline{3}$, 23 | Isotropic |
| Hexagonal | one $6, \overline{6}, 3$ or $\overline{3}$ | $\begin{aligned} & \mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}_{3} \neq \mathrm{c} \\ & \mathrm{a} \wedge \mathrm{c}=90^{\circ} \\ & \mathrm{a}_{1} \wedge \mathrm{a}_{2}=120^{\circ} \\ & \mathrm{a}_{2} \wedge \mathrm{a}_{3}=120^{\circ} \end{aligned}$ | 1-symmetry of $\mathbf{c}$ axis 2-symmetry of a axes 3-other (between a axes) | $\begin{aligned} & \hline \mathbf{6} / \boldsymbol{m}^{\mathbf{2} / \boldsymbol{m}^{2} / \boldsymbol{m},} \\ & \overline{6} 2 \mathrm{~m}, 6 \mathrm{~mm}, 622, \\ & 6 / m, \overline{6}, 6, \overline{3} \\ & 2 / m, 3 \mathrm{~m}, 32, \overline{3}, 3 \\ & \hline \end{aligned}$ | Uniaxial |
| Tetragonal | one 4 or $\overline{4}$ | $\begin{aligned} & a_{1}=a_{2} \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ | 1-symmetry of $\mathbf{c}$ axis 2-symmetry of a axes 3-other (between a axes) | $\begin{aligned} & \mathbf{4} / \boldsymbol{m}^{2} / \boldsymbol{m}^{\mathbf{2}} / \boldsymbol{m}, \\ & 42 \mathrm{~m}, 4 \mathrm{~mm}, 422, \\ & 4 / \mathrm{m}, \overline{4}, 4 \\ & \hline \end{aligned}$ | Uniaxial |
| Orthorhombic | three 2 and/or m | $\begin{aligned} & \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \mathrm{c}>\mathrm{b}>\mathrm{a} \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ | 1-symmetry of a axis 2-symmetry of $\mathbf{b}$ axes 3-other (between caxes) | $\underset{222, \mathrm{~mm} 2}{\mathbf{2} / \boldsymbol{m}^{\mathbf{2}}} \mathbf{2} / \boldsymbol{m}$ | Biaxial |
| Monoclinic | one 2 and/or one m | $\begin{aligned} & \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha=\gamma=90^{\circ} \\ & \beta>90^{\circ} \end{aligned}$ | 1 -symmetry of $\mathbf{b}$ axis | $\mathbf{2} / \mathrm{m}, 2, \mathrm{~m}$ | Biaxial |
| Triclinic | 1 or $\overline{1}$ | $\begin{aligned} & \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha=\beta>90^{\circ} \\ & \gamma>\text { or }<90^{\circ} \end{aligned}$ | $1-1$ or $\overline{1}$ | $\overline{\mathbf{1}}, 1$ | Biaxial |
| * | $\alpha=\mathrm{b} \wedge \mathrm{c}, \beta=\mathrm{a} \wedge \mathrm{c}, \gamma=\mathrm{a} \wedge \mathrm{b}$ |  |  |  |  |
| ** | The holohedral or highest symmetry class in each system is shown in bold letters |  |  |  |  |

## Uniaxial sign and interference figure

 Uniaxial Interference Figure (centered)

## Biaxial Relationships



Biaxial Positive (+)
$\beta$ closer to $\alpha$ $Z$ is Bxa


Biaxial Negative (-)
$\beta$ closer to $\gamma$ X is Bxa

Greg Finn-Brock U.

## Biaxial Optic Axis Figure

Biaxial Optic Axis Figure (centered)
(at $45{ }^{\circ}$ from extinction)


OPTIC AXIS FIGURE - CURVATURE OF ISOGYRES AS A FUNCTION OF 2V


