Hoş Geldiniz,
Misafir
.
Oturum Aç
.
English
NİNOVA
DERSLER
YARDIM
HAKKINDA
Neredeyim:
Ninova
/
Dersler
/
Maden Fakültesi
/
PET 328E
/
Dersin Bilgileri
Fakülteye dön
Ana Sayfa
Dersin Bilgileri
Dersin Haftalık Planı
Değerlendirme Kriterleri
Dersin Bilgileri
Dersin Adı
Türkçe
Jeo-Enerji Verilerinin Analitiği
İngilizce
Geo-Energy Data Analytics
Dersin Kodu
PET 328E
Kredi
Ders
(saat/hafta)
Uygulama
(saat/hafta)
Labratuvar
(saat/hafta)
Dönem
-
3
3
-
-
Dersin Dili
İngilizce
Dersin Koordinatörü
Fazıl Emre Artun
Dersin Amaçları
1.Familiarize students with subsurface data types collected in oil, natural gas and geothermal engineering
2.Develop students’ ability to apply exploratory data analysis, data mining concepts to subsurface data with appropriate visualization and analysis techniques
3.Develop students’ ability to deal with large data sets through the use of modern computational tools and packages
4.Introduce students supervised and unsupervised machine learning algorithms for the development of prediction and classification models for subsurface data
Dersin Tanımı
Overview of data science concepts. Data types for subsurface energy resources. Basic principles of descriptive and inferential statistics. Exploratory data analysis and data mining as applied to subsurface data types. Data visualization. Introduction to supervised and unsupervised machine learning. Applications with modern computational tools and packages. Case studies for oil, natural gas and geothermal engineering.
Dersin Çıktıları
1.Define and classify different types of data collected for subsurface energy resources
2.Clean and process subsurface data using modern statistical computational packages for further analysis and visualization
3.Perform exploratory data analysis by creating and interpreting visual representations and statistical summaries of data related to subsurface energy resources
4.Design and train machine learning models for prediction and classification using supervised and unsupervised algorithms
5.Report data analytics and machine learning projects in an organized way and in reproducible formats
Önkoşullar
Gereken Olanaklar
Diğer
Ders Kitabı
Diğer Referanslar
Dersler
.
Yardım
.
Hakkında
Ninova, İTÜ Bilgi İşlem Daire Başkanlığı ürünüdür. © 2023