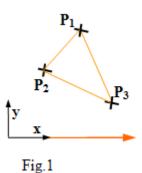
Istanbul Technical University Faculty of Mechanical Engineering MAK422E Engineering Design and CAD Final Exam, Jan.4, 2005 Instructors: Hikmet Kocabas Time: 100 minutes

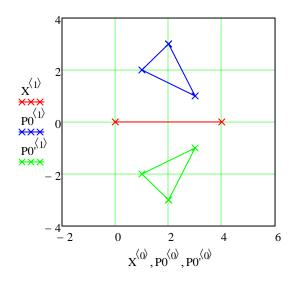
1. (15) Apply mirror transformation matrix with respect to x axis on triangle (Fig.1) formed by end points P_1 (2,3), P_2 (1,2), P_3 (3,1). Sketch the results.

$$n = (x2 - x1) / |x2 - x1|$$



Answer 1. Mirror point with respect to (wrt) an axis :

$$\begin{aligned} \mathbf{x1} &:= \begin{pmatrix} 0\\0\\0 \end{pmatrix} & \mathbf{x2} := \begin{pmatrix} 4\\0\\0 \end{pmatrix} & \mathbf{X} := \begin{pmatrix} x1_0 & x1_1 & x1_2 & 1\\ x2_0 & x2_1 & x2_2 & 1 \end{pmatrix} & \mathbf{X}^{\mathrm{T}} = \begin{pmatrix} 0 & 4\\0 & 0\\0 & 0\\0 & 0\\1 & 1 \end{pmatrix} & \underset{\mathbf{axis}}{\mathbf{mirror}} \\ \mathbf{mirror} \\ \mathbf{wrt} \mathbf{x} \mathbf{axis} & \mathrm{Mirr} := \begin{pmatrix} 1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix} & \underset{\mathbf{mirror}}{\mathbf{points}} \\ \mathbf{to} \\ \mathbf{mirror} \\ \mathbf{P0} := \begin{pmatrix} 2 & 3 & 0 & 1\\1 & 2 & 0 & 1\\3 & 1 & 0 & 1\\2 & 3 & 0 & 1 \end{pmatrix} & \mathbf{P0}^{\mathrm{T}} \rightarrow \begin{pmatrix} 2 & 1 & 3 & 2\\3 & 2 & 1 & 3\\0 & 0 & 0 & 0\\1 & 1 & 1 & 1 \end{pmatrix} \\ \mathbf{Rz}(\theta) := \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0\\\sin(\theta) & \cos(\theta) & 0 & 0\\0 & 0 & 0 & 1 \end{pmatrix} & \mathbf{T} := \begin{pmatrix} 1 & 0 & 0 & x1_0\\0 & 1 & 0 & x1_1\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix} & \mathbf{T1} := \begin{pmatrix} 1 & 0 & 0 & -x1_0\\0 & 1 & 0 & -x1_1\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} x2_1 - x1_1\\x2_0 - x1_0 \end{pmatrix} & \theta = 0 \deg & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{Mirr} \cdot \mathbf{Rz}(\theta) \cdot \mathbf{T1} = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} x2_1 - x1_1\\x2_0 - x1_0 \end{pmatrix} & \theta = 0 \deg & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{Mirr} \cdot \mathbf{Rz}(\theta) \cdot \mathbf{T1} = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} x2_1 - x1_1\\x2_0 - x1_0 \end{pmatrix} & \theta = 0 \deg & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{Mirr} \cdot \mathbf{Rz}(\theta) \cdot \mathbf{T1} = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 0 & 0 & 1 \end{pmatrix} & \theta = 0 \operatorname{deg} & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{Mirr} \cdot \mathbf{Rz}(\theta) \cdot \mathbf{T1} = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} x2_1 - x1_1\\x2_0 - x1_0\\0 & 0 & 0 & 1 \end{pmatrix} & \theta = 0 \operatorname{deg} & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{Mirr} \cdot \mathbf{Rz}(\theta) \cdot \mathbf{T1} = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} x2_1 - x1_1\\x2_0 - x1_0\\0 & 0 & 0 & 1 \end{pmatrix} & \theta = 0 \operatorname{deg} & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{T1} = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} x2_1 - x1_1\\x2_0 - x1_0\\0 & 0 & 0 & 1 \end{pmatrix} & \theta = 0 \operatorname{deg} & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{T1} = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \\ \theta := \operatorname{atan} \begin{pmatrix} x2_1 - x1_1\\x2_0 - x1_0\\0 & 0 & 0 & 1 \end{pmatrix} & \theta = 0 \operatorname{deg} & \mathbf{T} \cdot \mathbf{Rz}(-\theta) \cdot \mathbf{T1} = \begin{pmatrix} x2_1 & x2_1\\y = x2_$$



2. (15) Find the tangent point P₃ (Fig.2) and radius r of circle defined by center P₀=(2,6) to line between P₁=(1,2), P₂=(7,6) ? Use vector algebra $A \cdot B = |A|.|B|.cos(\theta)$ $|A \ge n| = |A|.1.sin(\theta)$ Sketch the results.

Answer 2. Tangent point of line and circle:

$$\begin{split} P_{1} &:= \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} \qquad P_{2} := \begin{pmatrix} 7\\ 6\\ 0 \end{pmatrix} \qquad n_{1} := \frac{(P_{2} - P_{1})}{|P_{2} - P_{1}|} \qquad n_{1} = \begin{pmatrix} 0.832\\ 0.555\\ 0 \end{pmatrix} \qquad |n_{1}| = 1 \\ \\ P_{0} := \begin{pmatrix} 2\\ 6\\ 0 \end{pmatrix} \qquad n_{2} := \frac{(P_{0} - P_{1})}{|P_{0} - P_{1}|} \qquad n_{2} = \begin{pmatrix} 0.243\\ 0.97\\ 0 \end{pmatrix} \qquad |n_{2}| = 1 \\ \\ \begin{pmatrix} P_{0} - P_{1} \end{pmatrix} \cdot n_{1} = 3.051 \qquad P_{3} := P_{1} + n_{1} \cdot \left[(P_{0} - P_{1}) \cdot n_{1} \right] \qquad P_{3} = \begin{pmatrix} 3.538\\ 3.692\\ 0 \end{pmatrix} \\ P := augment(P_{2}, P_{1}) \qquad P := augment(P, P_{0}) \qquad P := augment(P, P_{3}) \qquad j := 0 \dots cols(P) \\ R := \left| (P_{0} - P_{1}) \times n_{1} \right| \qquad R = 2.774 \qquad |P_{3} - P_{0}| = 2.774 \\ parametric form of the circle \qquad n := 30 \qquad i := 0 \dots n \qquad u_{i} := \frac{i \cdot 2 \cdot \pi}{n} \end{split}$$

tangent circle to

a line

P₃

n₁?

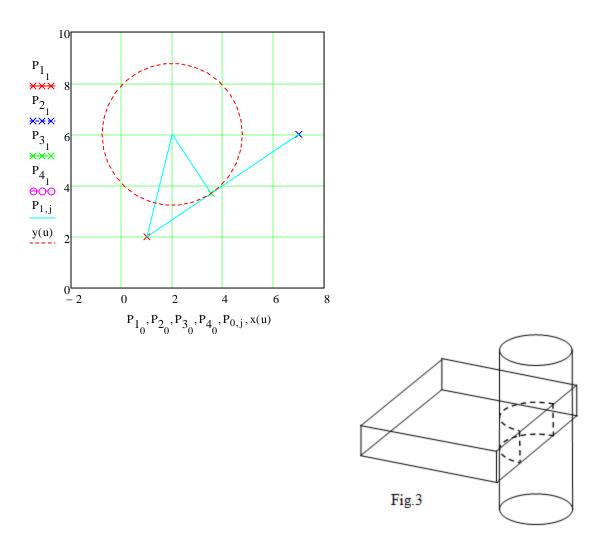
у

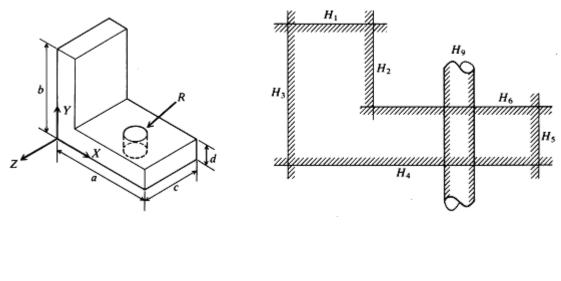
P

P2

Fig.2

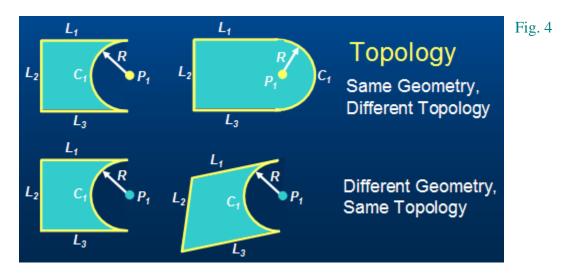
 $\mathbf{x}(\mathbf{u}) \coloneqq \mathbf{P}_{0} + \mathbf{R} \cdot \cos(\mathbf{u}) \qquad \mathbf{y}(\mathbf{u}) \coloneqq \mathbf{P}_{0} + \mathbf{R} \cdot \sin(\mathbf{u}) \qquad \mathbf{C}(\mathbf{u}) \coloneqq \begin{pmatrix} \mathbf{x}(\mathbf{u}) \\ \mathbf{y}(\mathbf{u}) \\ \mathbf{0} \end{pmatrix}$





4. (10) What is difference between geometric representations and topological representations?

Answer 4. Unlike wireframe and surface models, which contain only geometric data, solid models contain both geometric data and topological information of the correspond objects. The difference between geometry and topology is illustrated in Figure 4. Geometry (sometimes called metric information) is the actual dimensions that define the entities of object. The geometry that defines the object shown in Fig.4 is the lengths of lines L_1, L_2 and L_3 , the angles between the lines, and the radius R and the center P_1 of the half-circle Topology (sometimes called combinatorial structure), on the other hand, is the connectivation and associativity of the object entities. It has to do with the notion of neighborhood; that it determines the relational information between object entities.



5. (15) What are Design For X (DFX) acronyms?

Answer 5. Some of the DFX acronyms are, (modified from [Dodd, 1992])

DFA	Design For Assembly	DFP	Design For Portability (Software
DFD	Design For Disassembly	DFQ	Design For Quality
DFEMC	Design For ElectroMagnetic	DFR	Design For Redesign
Compatibility		DFR	Design For Reliability
DFESD	Design For Electrostatic	DFR	Design For Reuse
Discharge		DFS	Design For Safety
DFI	Design For Installability	DFS	Design For Simplicity
DFM	Design For Maintainability	DFS	Design For Speed
DFM	Design For Manufacturability	DFT	Design For Test
DFML	Design For Material Logistics		

6. (15) Write down the main principles of Design for Manufacture.

Answer 6. PRINCIPLES OF DFM

- 1. Reduce the total number of parts
- 2. Develop modular designs
- 3. Use standard components
- 4. Parts should be multi-functional
- 5. Parts should be multi-use
- 6. Parts should be designed for ease of fabrication
- 7. Avoid separate fasteners
- 8. Minimize the number of assembly directions.
- 10. Minimize handling

7. (10) What are the advantages of these engineering design techniques?

Answer 7. Advantages of these techniques are,

- shorter production times
- fewer production steps
- smaller parts inventory
- more standardized parts
- simpler designs that are more likely to be robust
- they can help when expertise is not available, or as a way to reexamine traditional desi
- proven to be very successful over decades of application

8. (10) How do you define a design optimization problem?

Answer 8.

- Design variables
- Design constraints
- Design function, minimization/maximization
- Iteration