1. (15) What are the major disadvantages of Bezier curve representation?
2. (15) Check the validity of solid in figure 1 by using Euler-Poincare equation. $F-E+V-L=2(B-G)$

3. (20) Apply a mirror transformation with respect to the vector $\mathbf{n}_{\mathbf{1}}$ defined with $\mathbf{P}_{\mathbf{1}} \mathbf{(1 , 1)}, \mathbf{P}_{\mathbf{2}}(\mathbf{3}, \mathbf{2})$ on the point $\mathbf{P}_{\mathbf{3}}(\mathbf{2}, \mathbf{2})$. Sketch the results.
4. (15) What is a Decision Matrix? Write a sample table.
5. (15) Write down the main principles of Design for Manufacture?
6. (20) How can you improve following designs in terms of DFA (handling and assembly)? Draw sketches and explain.
a)

Note: You may keep the question paper.

ANSWERS OF QUESTIONS

1. (15) What are the major disadvantages of Bezier curve representation?

A Bezier curve degree ($n-1$) is defined to the number of control points (n).
Moving a control point of the curve modifies the shape of the whole curve.
2. (15) Check the validity of solid in figure 1 by using Euler-Poincare equation: F-E+V-L=2(B-G).

$$
\text { F-E+V-L=2(B-G) } 7-16+11-3=2(1-2)=-1=-2 \text { not valid }
$$

3. (20) Apply a mirror transformation with respect to the vector $\mathbf{n}_{\mathbf{1}}$ defined with $\mathbf{P}_{\mathbf{1}}(\mathbf{1}, \mathbf{1}), \mathbf{P}_{\mathbf{2}}(\mathbf{3}, \mathbf{2})$ on the point $\mathbf{P}_{\mathbf{3}}(\mathbf{2}, \mathbf{2})$. Sketch the results.

$\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}| \cdot|\mathbf{B}| \cdot \cos (\theta) \quad\left|\mathbf{A} \times \mathbf{n}_{1}\right|=|\mathbf{A}| \cdot \mathbf{1} \cdot \sin (\theta)$
$\mathbf{n}_{\mathbf{x}}=(1,0,1) \quad \mathbf{n}_{\mathbf{1}}=\left(\mathbf{P}_{\mathbf{2}}-\mathbf{P}_{\mathbf{1}}\right) /\left|\mathbf{P}_{\mathbf{2}}-\mathbf{P}_{\mathbf{1}}\right|=(2,1,0) / 2.236=(0.894 ; 0.447 ; 0)$
$\mathbf{n}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{x}}=|\mathbf{1}| \cdot \mathbf{1} \mid \cdot \cos (\theta) \quad \theta=\operatorname{acos}\left(\mathbf{n}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{x}}\right)=0.464 \mathrm{rad}=26.565 \mathrm{deg}$
$\mathbf{P}_{3}{ }^{\boldsymbol{\prime}}=(\mathbf{T}+) \mathbf{R}(\theta)\left(\right.$ Mirror $\left._{\mathrm{x}}\right) \mathbf{R}(-\theta)(\mathbf{T}-) \mathbf{P}_{3}=(2.4,1.2,1)$
$P_{1}:=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \quad P_{2}:=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right) \quad P_{3}:=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right) \quad n_{x}:=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
$\mathrm{P}_{2}-\mathrm{P}_{1}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right) \quad\left|\mathrm{P}_{2}-\mathrm{P}_{1}\right|=2.236$
$\mathrm{n}_{1}:=\frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{\left|\mathrm{P}_{2}-\mathrm{P}_{1}\right|} \quad \mathrm{n}_{1}=\left(\begin{array}{c}0.894 \\ 0.447 \\ 0\end{array}\right) \quad \theta:=\operatorname{acos}\left(\mathrm{n}_{1} \cdot \mathrm{n}_{\mathrm{x}}\right) \quad \theta=0.464 \quad \theta=26.565 \mathrm{deg}$
$\mathrm{T} 0:=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right) \quad \mathrm{T} 1:=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right) \quad \mathrm{R}_{\mathrm{Z}}(\theta):=\left(\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right) \quad \mathrm{R}_{\mathrm{Z}}(\theta)=\left(\begin{array}{ccc}0.894 & -0.447 & 0 \\ 0.447 & 0.894 & 0 \\ 0 & 0 & 1\end{array}\right)$
$\operatorname{Mirr}_{\mathrm{X}}:=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad \mathrm{T}_{\mathrm{W}}:=\mathrm{T} 0 \cdot \mathrm{R}_{\mathrm{Z}}(\theta) \cdot \operatorname{Mirr}_{\mathrm{X}} \cdot \mathrm{R}_{\mathrm{Z}}(-\theta) \cdot \mathrm{T} 1 \quad \mathrm{~T}=\left(\begin{array}{ccc}0.6 & 0.8 & -0.4 \\ 0.8 & -0.6 & 0.8 \\ 0 & 0 & 1\end{array}\right)$
$\mathrm{P}_{3}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right) \quad \mathrm{P}_{3}^{\prime}:=\mathrm{T} \cdot \mathrm{P}_{3} \quad \mathrm{P}_{3}^{\prime}=\left(\begin{array}{c}2.4 \\ 1.2 \\ 1\end{array}\right) \quad \mathrm{P} 12:=\left(\begin{array}{ll}1 & 3 \\ 1 & 2 \\ 1 & 1\end{array}\right) \quad \mathrm{P} 3:=\operatorname{augment}\left(\mathrm{P}_{3}, \mathrm{P}_{3}^{\prime}\right) \quad \mathrm{P} 3=\left(\begin{array}{cc}2 & 2.4 \\ 2 & 1.2 \\ 1 & 1\end{array}\right)$

4. (15) What is a Decision Matrix? Write a sample table.

Decision Matrix is used for grading the designs and selecting one of them to manufacture.
It is a kind of feasibility table.

Consumer Expectations (Features)	Product A	Product B
Controls		
Handle		
Balance		
Power cord		
Versatility		
Overall sense of quality		
Power		
Tipover stability		
Overall appearance		
Total weight		
Manufacturing: Ease of assembly Materials		

	Ref. Concept	Concept 1	Concept 2	Concept 3	Concept 4
Criterion 1	DATUM	+	-	-	S
Criterion 2		Same (S)	+	-	-
Criterion 3		+	-	S	-
Criterion 4		-	S	+	-
$\sum(+)$		2	1	1	0
$\sum(-)$		1	2	2	3
$\sum(\mathrm{S})$		1	1	1	1

5. (15) Write down the main principles of Design for Manufacture.

Answer 6. PRINCIPLES OF DFM

1. Reduce the total number of parts
2. Develop modular designs
3. Use standard components
4. Parts should be multi-functional
5. Parts should be multi-use
6. Parts should be designed for ease of fabrication
7. Avoid separate fasteners
8. Minimize the number of assembly directions.
9. Minimize handling
10. (20) How can you improve following design in terms of DFX (material, manufacturing process and assembly)? Draw sketches and explain.

Text book: Engineering Design, Springer (2007)Pahl_Beitz.pdf, pg.384, Fig.7.126, Embodiment Design
Prefer interface elements that have a stable posicn
e).

