Hoş Geldiniz, Misafir . Oturum Aç . English
Neredeyim: Ninova / Dersler / Makina Fakültesi / AKM 204E / Dersin Bilgileri

Dersin Bilgileri

Dersin Adı
Türkçe Akışkanlar Mekaniği
İngilizce Fluid Mechanics
Dersin Kodu
AKM 204E Kredi Ders
Dönem 2
3 3 - -
Dersin Dili İngilizce
Dersin Koordinatörü Filiz Altay
Dersin Amaçları The objective of this course is to introduce the engineering students to the fundamental principles of fluid mechanics.
Dersin Tanımı It is the intent of this course to show how the basic laws of fluid mechanics (fluid static; conservation of mass, energy and momentum) can be applied in an organized and systematic manner to the solution of practical (food) engineering problems. Ultimately the student should acquire the knowledge and skill required to find solutions to practical fluid flow problems.
Dersin Çıktıları Analyze forces and pressures for static fluid problems.
2. Recognize and apply appropriate conservation equations to analyze steady flowing fluid problems.
3. Apply energy and momentum equations to determine velocities and forces. Perform drag force calculations.
4. Perform dimensional analysis and apply principles of similitude to a given fluid and flow problem.
5. Use energy equation to predict flow characteristics and calculate pressure drop at and across all types of flow circuits and its pipes and other components.
6. Apply energy balance principles in order to determine the required pumps.
7. Apply basic principles of fluid mechanics to packed-bed and fluidized bed problems.
8. Be able to apply principles of fluid mechanics to different flow problems
Önkoşullar MAT102 MIN DD or
MAT104 MIN DD or
Gereken Olanaklar
Ders Kitabı R.W. Fox & A.T. McDonald. 1994. Introduction to Fluid Mechanics, John Wiley & Sons Inc. (Available in the library reserve section).
Diğer Referanslar Geankoplis, C. J. 2003. Transport processes and separation process principles: (includes unit operations). PTR Prentice, Hall (Electronic source available from ITU Library) (First 3 chapters)
White, F.M. 1994. Fluid Mechanics, McGraw-Hill, New York.
Bruce R. Mudson, Donald F. Young, Theodore H. Okiishi, 1994. Fundamentals of fluid mechanics. Wiley, New York.
Ron Darby, 1996. Chemical Engineering Fluid Mechanics, Marcel Dekker, Inc.
R. B. Bird, W. E. Stewart & E. N. Lightfoot, 2002. Transport Phenomena, John Wiley & Sons Inc.
Dersler . Yardım . Hakkında
Ninova, İTÜ Bilgi İşlem Daire Başkanlığı ürünüdür. © 2023