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Vector Algebra and Transformations



CAGD is a young field. The first work in this field began 
in the mid 1960s. The term computer aided geometric 
design was coined in 1974 by R.E. Barnhill and R.F. 
Riesenfeld in connection with a conference at the 
University of Utah.

Computer Aided Geometric Design



Consider the simple problem of writing a computer 
program which finds the area of any triangle. We must 
first decide how to uniquely describe the triangle. One 
way might be to provide the lengths l1, l2, l3 of the 
three sides, from which Heron’s formula yields

Points, Vectors and Coordinate Systems



An alternate way to describe the triangle is in terms of 
its vertices. But while the lengths of the sides of a
triangle are independent of its position, we can specify 
the vertices to our computer program only with
reference to some coordinate system — which can be 
defined simply as any method for representing points 
with numbers.

Points, Vectors and Coordinate Systems



Then, each vertex of our triangle could be described in 
terms of its respective distance from the two walls 
containing the origin and from the floor. These 
distances are the Cartesian coordinates (x, y, z) of the 
vertex with respect to the coordinate system we
defined. 

Unit Vectors
A unit vector is a vector whose 
length equals unity.

Points, Vectors and Coordinate Systems



A vector can be pictured as a line segment of definite 
length with an arrow on one end.

We will call the end with the arrow the tip or head and 
the other end the tail.

Vectors



Two vectors are equivalent if they have the same 
length, are parallel, and point in the same direction 
(have the same sense) as shown in Figure.

Equivalent Vectors

Vectors



For a given coordinate system, we can describe a 
three-dimensional vector in the form (a, b, c) where a 
(or b or c) is the distance in the x (or y or z) direction 
from the tail to the tip of the vector.

Vector in 
Component Form

Vectors



The symbols i, j, and k denote vectors of “unit length” 
(based on the unit of measurement of the coordinate 
system) which point in the positive x, y, and z
directions respectively (see Figure). Unit vectors allow 
us to express a vector in component form

P = (a, b, c) = ai + bj + ck

Unit Vectors

Unit vectors



An expression such as (x, y, z) can be called a triple of 
numbers. A triple can signify either a point or a vector.
Relative Position Vectors Given two points P1 and P2, 
we can define P2/1 = P2 − P1
as the vector pointing from P1 to P2. This notation 
P2/1 is widely used in engineering mechanics,
and can be read “the position of point P2 relative to 
P1” (see Figure).

Points and Vectors



In a Euclidean space we define the distance between
two points p and q as the norm of the vector p – q.

Because points correspond to vectors, for a fixed 
origin, and vectors correspond to column matrices, for 
a fixed basis, there is also a one-to-one orrespondence
between points and column matrices. A pair (origin, 
basis) is called a frame or coordinate system. For a fixed
frame, points correspond to column matrices.

The distance between two points



Given two vectors P1 = (x1, y1, z1) and P2 = (x2, y2, z2), 
the following operations are defined:
Addition:
P1 + P2 = P2 + P1 = (x1 + x2, y1 + y2, z1 + z2)

Subtraction:
P1 − P2 = (x1 − x2, y1 − y2, z1 − z2)

Vector Algebra



Using matrix notation a 
Vector can be written as 
x = x1e1 + x2e2 +…+ xnen

x = EX. 
The correspondence between vectors and matrices 
preserves addition and multiplication by a scalar. The 
matrix Z that corresponds to the sum of two vectors z 
= x + y is the sum

Vector Algebra



For multiplication by a scalar, 
if z = a x, then Z = a X, or

The inner or dot product, denoted x . y, is another useful 
operation defined on vectors. It produces a scalar given 
two vector arguments. It is defined formally by a set of 
axioms. The square root of the inner product of a
vector with itself is the norm or length of the vector, 
denoted

Vector Algebra



Scalar multiplication:  cP1 = (cx1 , cy1 , cz1)

Length of a Vector:
The length of x in an orthonormal basis becomes

Dot Product: The dot product of two vectors is defined
P1 · P2 = |P1||P2| cosθ

where θ is the angle between the two vectors.

Vector Algebra



Two vectors are orthogonal if their dot product is zero. 
The cosine of the angle between two vectors is given 
by

The most convenient bases are the orthonormal bases, 
composed of unit vectors that are pairwise orthogonal. 
In an orthonormal basis the inner product of two 
vectors is
x.y = XTY = x1y1 + x2y2 +…+ xnyn ,
where the superscript denotes matrix transposition,
obtained by interchanging rows with columns. 

Vector Algebra



Since the unit vectors i, j, k are mutually perpendicular,
i · i = j · j = k · k = 1
i · j = i · k = j · k = 0.
Since the dot product obeys the distributive law
P1 · (P2 + P3) = P1 · P2 + P1 · P3,
we can easily derive the very useful equation
P1 · P2 = (x1i + y1j + z1k) · (x2i + y2j + z2k)

= (x1 * x2 + y1 * y2 + z1 * z2)

Vector Algebra



The dot product allows us to easily compute the angle 
between any two vectors. From the dot product 
equation

Example. Find the angle between vectors (1, 2, 4) and 
(3,−4, 2).

Vector Algebra



Finally, there is an additional operation on vectors, 
called the vector product (also known as cross, or 
exterior product), that is very useful, especially in 3-D. 
Here we define it in terms of components in a right-
handed, orthonormal, 3-D basis:
x × y= (x2y3 - x3y2)e1 + (x3y1 - x1y3)e2 + (x1y2 - x2y1)e3

The result of a cross product is not truly a vector, and 
its definition depends on the orientation or 
handedness of a basis.

Vector product



The cross product of two parallel vectors is zero. For 
two non-parallel vectors, x and y , the cross-product 
x × y is perpendicular to both x and y . In particular, if E is 
a righthanded orthonormal basis in 3-D, then
e1 × e2 = e3

e2 × e3 = e1

e3 × e1 = e2

Vector product



Cross Product: The cross product P1 × P2 is a vector 
whose magnitude is
|P1 × P2| = |P1||P2| sinθ

(where again θ is the angle between P1 and P2), and 
whose direction is mutually perpendicular to P1 and P2 
with a sense defined by the right hand rule as follows. 
Point your fingers in the direction of P1 and orient your 
hand such that when you close your fist your fingers 
pass through the direction of P2. Then your right 
thumb points in the sense of P1 × P2.

Vector Algebra



From this basic definition, one can verify that
P1 × P2 = −P2 × P1,
i × j = k, j × k = i, k × i = j
j × i = −k, k × j = −i, i × k = −j.
Since the cross product obeys the distributive law
P1 × (P2 + P3) = P1 × P2 + P1 × P3,
we can derive the important relation

Cross Product



Cross products have many important uses. For 
example, finding a vector which is mutually 
perpendicular to two other vectors. Also, the cross 
product provides a straightforward method for finding 
the area of a triangle which is defined by three points 
P1, P2, P3 in space.

Cross Product, Area of a Triangle



For example, the area of a triangle with vertices P1 = 
(1, 1, 1), P2 = (2, 4, 5), P3 = (3, 2, 6) is

Cross Product, Area of a Triangle



A point is a geometric entity which connotes position, 
whereas a vector connotes direction and magnitude. 
From a purely mathematical viewpoint, there are good 
arguments for carefully distinguishing between triples 
that refer to points and triples that signify vectors. 
However, no problem arises if we recognize that a 
triple connoting a point can be interpreted as a vector 
from the origin to the point. Thus, we could call a point 
an absolute position vector and the difference
between two points a relative position vector.

Points vs. Vectors



The homogeneous Cartesian coordinates (X, Y,W) of a 
point are defined x=X/W; y=Y/W.
Homogeneous coordinates are useful, among other 
things, for expressing points at infinity: The point 
(X,Y,0) is an infinite distance from the origin (or from 
any finite point, for that matter) in the direction Xi+Yj. 
Obviously, the homogeneous coordinates of a point 
are only unique to within a scale factor. For example, 
the point (x, y) = (2, 3) has homogeneous coordinates 
(X, Y,W)=(2, 3, 1), or (4, 6, 2), or in general, (2W,3W,W). 
The point (X, Y,W) = (0, 0, 0) is undefined.

Homogeneous Coordinates



A line can be defined using either a parametric
equation or an implicit equation.

Parametric equations of lines
Linear parametric equation. A line can be written in 
parametric form as follows:
x = a0 + a1t; y = b0 + b1t

In vector form,

Lines



In this equation, A0 is a point on the line and A1 is the 
direction of the line (see Figure)

Line given by A0 + A1t.

Affine parametric equation of a line. A straight line can 
also be expressed

Lines



where P0 and P1 are two points on the line and t0 and 
t1 are any parameter values. Note that
P(t0) = P0 and P(t1) = P1. 
Note in Figure that the line segment P0–P1 is defined 
by restricting the parameter: t0 ≤ t ≤ t1.

Line given by P(t)

Lines



Sometimes this is expressed by saying that the line 
segment is the portion of the line in the parameter
interval or domain [t0, t1]. We will soon see that the line 
in Figure is actually a degree one Bezier curve. Most 
commonly, we have t0 = 0 and t1 = 1 in which case
P(t) = (1 − t)P0 + tP1.

Lines



Moving, sizing, and deforming objects are 
fundamental operations in geometric modeling.
Since objects are sets of points, what we need are 
transformations that map points onto other points. 

The following subsections discuss linear and affine
transformations, which are the simplest and most 
commonly used in geometric modeling. For simplicity 
we assume a fixed origin, and make no distinction 
between points and vectors.

Transformations



A transformation T from a vector space onto itself is 
linear if it distributes over linear
combinations, i.e.,
T(ax + by) = aT(x) + bT(y).
Suppose we have two bases
E = [e1…en]
F = [f1…fn]
and we want a linear transformation that maps the 
vectors of E onto the vectors of F (see Figure):
Tef (ei ) = fi , i = 1,…,n.

Linear Transformations



Transforming
a basis E 
and a vector x.

Let x be a vector 
and y its
transformed
version
y = Tef (x).

Linear Transformations



Consider the rectangle shown on the left in Figure, and 
suppose we want to orient it such that it aligns with 
the rectangle on the right. 

Orienting 
an object 
by frame 
alignment

Linear Transformations



All we need is a transformation with a matrix whose 
columns are the components of the vectors F in the 
basis E. (In 2-D it is easy to determine the required 
transformation by other means, but in a 3-D example it
would not be as easy.) 

Orienting 
an object 
by frame 
alignment

Linear Transformations



For a specific example, let us determine the matrix 
that corresponds to a counterclockwise rotation by an 
angle . The components of the vectors F are easy to 
calculate from elementary trigonometry, as shown in 
Figure.

Derivation 
of a rotation 
matrix

Linear Transformations



We obtain

and therefore the rotation matrix is

Composition of successive transformations
corresponds to matrix multiplication

Linear Transformations



And the inverse transformation, which maps a basis F 
onto a basis E corresponds to the inverse matrix

Matrix multiplication is not commutative, i.e., in 
general AB≠BA for arbitrary square matrices A and B. 
The inverse of a matrix product reverses the order of the 
matrices:

Note that some linear transformations do not map a 
basis onto another.

Linear Transformations



Here we investigate several interesting linear
transformations in 2-D. The results apply also to 3-D, 
with minor and obvious modifications.

Scaling – Consider the transformation with matrix

To study its effect on a vector we multiply the 
corresponding matrices

Linear Transformations



Here we are denoting the components of a 2-D vector 
by the customary x and y. The result is a scaling by 
factors a and b along the x and y axes. If a = b the 
scaling is uniform or isotropic and alters the size of an 
object but not its shape. If both scale factors equal 
unity, the transformation is the identity and does not 
modify the object.

Linear Transformations



Figure illustrates anisotropic scaling by its effect on a 
square located at the origin.

Non-uniform scaling

Linear Transformations



Shear – Now let one of the off-diagonal elements of the 
matrix be non-zero. The result is a shear, with the 
following matrix, and with the effect shown in Figure.

Shear

Linear Transformations



Rotation – As we saw earlier, the matrix is

Rotation

Linear Transformations



Reflection – Scalings with negative factors produce 
reflections. A reflection about the x axis is shown below.

Reflection about 
the vertical axis

Reflections about the horizontal axis, or about the 
origin can be constructed similarly.

Linear Transformations



Orthographic projection – Consider now

This transformation zeroes the y component and does 
not affect the x component. It corresponds to a
perpendicular or orthographic projection on the x axis.

Orthographic projection 
on the horizontal axis

Linear Transformations



Orthographic projection does not map a basis onto 
another basis. It is called a singular transformation, and 
cannot be inverted. The projection causes a loss of 
information about the y components of the vectors. 
Knowledge of the x component is insufficient to recover 
a vector, because many vectors project on the same 
point of the x axis.

Linear Transformations



A translation Δ is a mapping that associates to each 
vector x the sum x + δ, where δ is a constant vector. 
Translations are not linear transformations and cannot 
be computed by matrix multiplication as we have been 
doing (but see Section below). The components of a 
translated vector y = x + δ are Y = X + D , where D is the 
column matrix that corresponds to the translation 
vector. A translation is shown in Figure.

Rigid Motions



Translation
Compositions of translations and linear ransformations
are called affine transformations. Both translations and 
linear transformations are practically important, and 
their nonuniform behavior with respect to components 
is computationally inconvenient. Separate procedures 
must be written for dealing with translations and linear 
transformations, and they cannot be composed by 
matrix multiplication. (We will see later that both
transformations can be treated uniformly if we
introduce homogeneous coordinates.)

Rigid Motions



Typically, in geometric modeling we do not want to change 
the shape of a transformed object. Transformations are 
applied primarily to locate and orient objects. 
Transformations that preserve distance are called 
isometries (from the Greek, meaning “same measure”).
Isometries that also preserve the signed angles between 
vectors are called in this course rigid motions. (This is not 
entirely standard terminology; some texts consider “rigid
motions” and “isometries” as synonyms.) It can be shown 
that rigid motions are affine and must be compositions of 
translations and rotations.

Rigid Motions



Figure shows several 
congruent triangles
in the plane.

Instances of a triangle

The matrix that corresponds to a rotation in an 
orthonormal basis is a special case of a so called
orthogonal matrix. These matrices can be inverted 
easily, by transposition:

Rigid Motions



Free and Applied Vectors

Translation by vector addition

We defined translation of a vector x as the addition to x 
of a vector , as shown in Figure. Vector translation does 
not correspond to the intuitive notion of translation of 
an “arrow” by translating its endpoints, without 
changing the length or the direction of the arrow.

Rigid Motions



Consider the right, circular cylinder shown on the left 
in Figure 2.3.2. The cylinder is characterized
completely by two scalar parameters—its diameter D 
and height H—plus a point c—the center of a base—
and a vector a along the cylinder’s axis. Suppose now 
that we want to move the cylinder to a different 
location and orientation, shown on the right in the
figure.

Rigid Motions



Mathematically, moving the cylinder corresponds to 
applying a rigid motion T to it. How can we compute 
the values c` and a` that characterize the cylinder after 
the application of T? Clearly c`= T(c). But a`≠ T(a) 
because T has a translational component.

Moving
a cylinder

Rigid Motions



The cylinder in our example can be described by scalars D 
and H, point c, and free vector a. Intuitively, it is helpful to 
think of a as being attached to the point c. This notion may 
be formalized by defining yet another entity, called an 
applied vector, which consists of a pair (p, x), where p is a 
point and x a free vector. Equivalently, we can define an 
applied vector as a pair of endpoints (p, q) with q = p + x. An 
applied vector is transformed by applying a transformation 
to both endpoints. In Figure the pair (c, a) is an applied
vector, which transforms as shown on the right in the
figure.

Rigid Motions



Free and applied vectors are used extensively in 
geometric modeling. For example, the normal
direction to a surface is often represented by a free 
vector plus the point at which the normal is calculated, 
i.e., by an applied vector. (Point information is 
unnecessary for planar surfaces, which have a single, 
constant normal.) Tangential directions for curves are
treated similarly.

Rigid Motions



The need for inversion has a simple geometric 
interpretation, illustrated by the example of Figure. 
Consider a vector x in base E, on the left in the figure. If 
we rotate the basis by an angle to obtain basis F, as 
shown in the center of the figure, the components of x
change.

Vector transformation versus change of basis

Vector transformation



We begin this section with a pragmatic view of
homogeneous coordinate methods. We then explain 
them geometrically, and finally show how they can be 
used to compute perspective projections.

Transformations in Homogeneous Coordinates
Translations and linear transformations can be treated 
more uniformly if we introduce a different system of 
coordinates, called homogeneous coordinates. For 
simplicity we work in 2-D, but generalizations to 3-D or 
n-D are straightforward.

Homogeneous Coordinates



We continue to make no distinction between points 
and ordinary vectors. Suppose that we have a vector x 
with components X , and want to apply to it a linear 
transformation with matrix M, so as to obtain another 
vector y with components Y. We introduce an additional 
component and associate with the vector x the column 
matrix

Homogeneous Coordinates



The elements of X* are called homogeneous
coordinates. We also add a third row and column to the 
linear transformation matrices as follows

This matrix can be written in block format as

Homogeneous Coordinates



where M is the usual 2 by 2 linear transformation matrix, 
and the two-zero row and column are both denoted by 
0. Multiplying the matrices

shows how to evaluate the effects of a linear
transformation in the new, augmented-matrix format. 
Scalings, shears, rotations, and so on, can be achieved 
by replacing M in the 3 by 3 matrix above by the various 
matrices we discussed earlier.

Homogeneous Coordinates



Let us now investigate what happens if the elements 
of the third column of the matrix become non-zero.
Consider

and apply it to a generic vector:

Homogeneous Coordinates



This is precisely the result of translating x by a vector 
with components (a, b). Therefore we have found a 
method for computing both translations and linear 
transformations by matrix multiplication. In particular, 
rigid motions in the plane are associated with 3 by 3
matrices. In 3-D they correspond to 4 by 4 matrices.

For reference, the three matrices that correspond to 
rotations about the x, y and z axes are:

Homogeneous Coordinates



Uniform treatment of translations and rotations is 
computationally important. It implies that we only 
need one procedure to implement both, and that 
matrix-multiplication hardware can be used for both. 
We will see later that homogeneous coordinates also 
can deal with projections, which are needed for 
displaying objects.

Homogeneous Coordinates



Geometric Interpretation
Homogeneous-coordinate methods were introduced 
above as convenient “recipes”. But they have a rich 
body of mathematics and geometric intuition 
underlying them. Here we explore it briefly. First we 
generalize slightly, and write the homogeneous 
coordinates of an Euclidean point p as

Homogeneous Coordinates



We have increased the dimension of our space by one. 
In addition, since we identify points at w=1 with 
Euclidean points, we have placed the standard Euclidean 
plane at w=1. Figure illustrates
this construction.

The Euclidean plane imbedded 
in an auxiliary 3-space

Homogeneous Coordinates



In particular, if w≠1 and is not zero, we can always scale 
all the components so as to normalize the coordinates:

The set of all lines through the origin of our auxiliary 
3-D space is called the projective plane. The elements of 
the projective plane are called projective points.

Homogeneous Coordinates



Perspective
Thus far we have only used homogeneous-coordinate 
matrices with a last row whose offdiagonal elements 
are null. Let us now investigate wnat happens when 
they are non-null. Consider the product

Homogeneous Coordinates



Perspective

(We use a –1/d term for reasons that will be obvious 
soon.) The result is no longer on the w=1 plane. 
Normalizing it we obtain

Homogeneous Coordinates



What is the physical meaning of this transformation? 
We will answer this question with the help of Figure, 
which shows how to project a point on the y axis of the 
Euclidean plane from a center of projection v lying on 
the x axis at x=d. By similarity of triangles

This is precisely the y coordinate we computed above by 
matrix multiplication.

Perspective



Central projection of a 2-D point on the vertical axis

Perspective



In 3-D, an analogous argument shows that
multiplication by the matrix

provides us with the x and y coordinates of the
projection of a point on the xy plane, from a center of 
projection on the z axis at z=d. Projection on a plane is a 
fundamental operation for the generation of a display—
see Figure.

Perspective



Drawing an object by projecting it on a plane

Perspective



Perspective transformation applied to a 2-D solid

Perspective



In 3-D the perspective transformation produces a 
deformed 3-D object, which must be projected 
orthographically onto the xy plane to generate the 
desired 2-D image. Computing a planar projection 
involves matrix multiplication, followed by
normalization and orthographic projection. This latter 
involves essentially no computation, since it amounts 
to ignoring the z coordinate. But normalization is 
relatively expensive, because it requires a division.

Perspective



A robotic manipulator is a kinematic chain, i.e., a 
collection of solid bodies—called links—connected at 
joints. The most common joints are the revolute joint, 
which corresponds to rotational motion between two 
links, and the prismatic joint, which corresponds to a 
translation. Most of the industrial robot “arms” in use 
today have only revolute joints. Figure shows an 
idealized robot with two links and two revolute joints.

Applications in Robotics and Simulation



Stick-figure model for a 2-link robot

Applications in Robotics and Simulation
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