
Lecture 4

Laminar Premixed Flame Configuration
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Bunsen burner 

classical device to generate a 
laminar premixed flame.

Gaseous fuel enters into the mixing
chamber, into which air is entrained. 

The velocity of the jet entering into the 
mixing chamber may be varied and the 
entrainment of the air and the mixing 
can be optimized.
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The mixing chamber must be 
long enough to generate a 
premixed gas issuing from the
Bunsen tube into the surroundings. 

If the velocity of the issuing flow 
is larger than the 
laminar burning velocity to be 
defined below, a Bunsen flame cone
establishes at the top of the tube.
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Kinematic balance for a steady oblique flame: 

The oncoming flow velocity vu of the unburnt
mixture (subscript u) is  split into a 
component vt,u which is tangential to the flame 
and into a component vn,u normal to the flame front. 

Due to thermal expansion within the flame 
front the normal velocity component is increased, 
since the mass flow density Uvn through the flame must be the same in the 
unburnt mixture and in the burnt gas (subscript b).

The tangential velocity vt is not affected by the gas expansion:
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Vector addition of the velocity components in 
the burnt gas leads to vb which points into a 
direction which is deflected from the flow 
direction of the unburnt mixture. 

Since the flame front is stationary, the 
burning velocity sL,u with respect to the 
unburnt mixture must be equal to the flow velocity 
of the unburnt mixture normal to the front

where D is the Bunsen flame cone angle.

This allows to experimentally determine the burning velocity by measuring the cone 
angle D under the condition that the flow velocity vu is uniform across the tube exit.
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A particular phenomenon occurs at the flame tip. 

If the tip is closed, the burning velocity at the tip is 
equal to the flow velocity

Therefore the burning velocity at the flame tip is by 
a factor 1 / sin D larger than the burning velocity through 
the oblique part of the cone.

Explanation:  the strong curvature of the flame front at the tip leads to a preheating by 
the lateral parts of the flame front and thereby to an increase in burning velocity. 

A detailed analysis of this phenomenon also includes the effect of non-unity Lewis 
numbers by which, for instance, a difference between lean hydrogen and lean 
hydrocarbon flames can be explained. 
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Finally, one observes that the flame is detached from 
the rim of the burner. 

This is due to conductive heat loss to  the burner 
which leads in regions very close to the rim to temperatures, 
at which combustion cannot be sustained.
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Another example for an 
experimental device to measure 
laminar burning velocities
is the combustion bomb
within which a flame 
is initiated by a central spark.

Spherical propagation of a flame then takes place 
which may optically be detected through
quartz windows and the flame propagation velocity drf /dt may be recorded.

Now the flame front is not stationary. 

4.-8



If the radial flow velocities are defined 
positive in inward direction, the velocity 
of the front must be subtracted from these 
in the mass flow balance through the 
flame front.

At the flame front the kinematic balance between propagation velocity, flow velocity 
and burning velocity with respect to the unburnt mixture is

Similarly, the kinematic balance with respect to the burnt gas is

4.-9



In the present example the flow velocity 
in the burnt gas behind the flame is zero
due to symmetry. 

This leads to

from which the velocity in the unburnt mixture is calculated as

This velocity is induced by the expansion of the gas behind the flame front. 
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Furthermore it follows that the flame propagation velocity drf/dt is related  to the
burning velocity sL,u by

Measuring the flame propagation velocity  then allows to determine sL,u. 

Furthermore, from                                it follows with vb = 0:

The comparison shows that the burning velocity with respect to the burnt gas is by a 
factor Uu/Ub larger than that with respect to the unburnt gas. 

This is equivalent to the Bunsen burner case with:

Convenience:

We keep the notation sL,b for the burning velocity with respect to the burnt gas.
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Governing Equations for Steady Premixed Flames,
Numerical Calculations and Experimental Data

Planar steady state flame configuration normal to the x-direction

unburnt mixture at xo -f

burnt gas at  xo +f
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The flame structure for the case of a lean flame with a one-step reaction

The fuel and oxidizer are
convected from upstream 
with the burning velocity sL

Having the mass fractions 
YF,u and YO2,u at xo -f
and diffuse into the reaction zone. 

The fuel is entirely depleted while the remaining oxygen is convected downstream 
where it has the mass fraction YO2,u.
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The chemical reaction forms the product P and releases heat which leads to a 
temperature rise. 

The mass fraction YP increases 
therefore in a similar
way from zero to YP,b as the 
temperature from Tu to Tb. 

The products diffuses upstream, 
and mix with the fuel and the 
oxidizer. 
Heat conduction from the reaction zone is also directed upstream leading to a 
preheating of the fuel/air mixture. Therefore the region upstream of the reaction zone 
is called the preheat zone.
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The general case with multi-step chemical kinetics

The fundamental property of a premixed flame, the burning velocity sL may be 
calculated by solving the governing conservation equations for the overall mass, 
species and temperature.

Continuity

Species

Energy
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For flame propagation with burning velocities much smaller than the velocity of 
sound, the pressure is spatially constant and is determined from the thermal equation 
of state. 
Therefore spatial pressure gradients are neglected

The continuity equation may be integrated once to yield

The burning velocity is an eigenvalue, which must be determined as part of the 
solution. 

The system of equations may be solved numerically with the appropriate
upstream boundary conditions for the mass fractions and the temperature and zero
gradient boundary conditions downstream. 
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Example: Calculations of the burning velocity of premixed methane-air flames using 
a mechanism that contains only C1-hydrocarbons and a mechanism that includes the 
C2-species as a function of the equivalence ratio I�[Mauss 1993] . 

The two curves are compared 
with compilations of various 
data from the literature. 
It is seen that the calculations 
with the C2-mechanism
shows a better agreement than 
the C1-mechanism. 
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Example: 
burning velocities of propane flames taken from [Kennel1993]

Calculated values of burning 
velocities for lean flames 
are compared with 
approximations 
given below in Lecture 6 
for different pressures.

sL decreases with increasing pressure 
but increases with increasing 
preheat temperature.
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The fundamental property of a premixed flame is its ability to propagate normal to 
itself with a burning velocity.

The burning velocity, to first approximation, depends on thermo-chemical 
parameters of the premixed gas ahead of the flame only. 

In a steady flow of premixed gas a premixed flame will propagate against the flow 
until it stabilizes. 

o Bunsen flame: the condition of a constant burning velocity is violated at the top 
of the flame. Curvature must be taken into account. 

In this chapter we want to calculate flame shapes. We then will consider external
influences that locally change the burning velocity and discuss the response of the 
flame to these disturbances.
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A Field Equation Describing the Flame Position

The kinematic relation                                      between the propagation velocity, the 
flow velocity, and the burning velocity that was derived for spherical flame 
propagation may be generalized by introducing the vector n normal to the flame

where xf is the vector describing 
the flame position, 
dxf/dt the flame propagation velocity, 
and v the velocity vector.
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A Field Equation Describing the Flame Position

The normal vector points towards 
the unburnt mixture and is given by

where G(x,t) can be identified as 
a scalar field whose level surfaces

where G0 is arbitrary, represent the flame surface. 

The flame contour G(x,t) = G0 divides the physical field into two regions, where 
G > G0 is the region of burnt gas and G < G0 that of the unburnt mixture. 
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If one differentiates G(x,t) = G0 with respect to t at G = G0, such as

or with

Introducing                                    and identifying 

one obtains the field equation called G-equation :
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If the burning velocity sL is defined with respect to the unburnt mixture, then 
the flow velocity v is defined as the conditioned velocity field in the unburnt mixture 
ahead of the flame. 

For a constant value of sL the solution of 

is non unique, and cusps will be formed where 
different parts of the flame intersect. 

Even an originally smooth undulated front in a quiescent flow will form cusps and 
eventually become flatter with time. This is called Huygens' principle. 
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Example 

A closed form solution of the G-equation 

can be obtained for the case of a slot burner with a 
constant exit velocity u for premixed combustion, 

This is the two-dimensional planar version of the 
axisymmetric Bunsen burner.

The G-equation takes the form
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With the ansatz

and G0 = 0 one obtains

leading to

As the flame is attached at x = 0, y =  ± b/2, where G = 0, 
this leads to the solution
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The flame tip lies with y=0, G = 0 at

and the flame angle D is given by

With                                                  it follows that

which is equivalent to                                     .
This solution shows a cusp at the flame tip x = xF0, y = 0. In order to obtain a
rounded flame tip, one has to take modifications of the burning velocity due to flame
curvature into account. This leads to the concept of flame stretch.
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Flame stretch

Flame stretch consists of two contributions: One due to flame curvature and another 
due to flow divergence. 
For a one-step large activation energy reaction and with the assumption of constant 
properties the burning velocity sL is modified by these two effects as

s0
L is the burning velocity for an unstretched flame and      is the Markstein length.
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The flame curvature N is defined as

which may be transformed as

The Markstein length appearing in 

is of the same order of magnitude and proportional to the laminar flame thickness , 
their ratio           is called the Markstein number. 
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For the case of a one-step reaction with a large activation energy, constant transport 
properties and a constant heat capacity cp, the Markstein length with respect to the 
unburnt mixture reads

This expression was derived by [Clavin and Williams (1982)] and
[Matalon and Matkowsky (1982)]. 

Here                                            is the Zeldovich number, where E is the activation 
energy and     the universal gas constant, and Le is the Lewis number of the deficient 
reactant. 
The expression is valid if sL is defined with respect to the unburnt mixture. A different 
expression can be derived, if both, sL and     are defined with respect to the burnt gas 
[cf. Clavin, 1985].
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We want to explore the influence of curvature on the burning velocity for the case 
of a spherical propagating flame. 

Since the flow velocity is zero in the burnt gas, it is advantageous to formulate the
G-equation with respect to the burnt gas:

where rf(t) is the radial flame position.
The burning velocity is then s0

L,b and the Markstein length is that with respect to
the burnt gas      .

Here we assume               to avoid complications associated with thermo-diffusive 
instabilities. 
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In a spherical coordinate system the G-equation reads

where the entire term in round brackets represents the curvature in spherical
coordinates. 

We introduce the ansatz

to obtain at the flame front r=rf

This equation may also be found in [Clavin (1985)].
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This equation reduces to                        for
It may be integrated to obtain

where the initial radius at t=0 is denoted by rf,0.

This expression has no meaningful solutions for  
indicating that there needs to be a minimum initial flame kernel for flame 
propagation to take off. 

It should be recalled that 

is only valid if the product          
For                       curvature corrections are important at early times only.
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Flame Front Instability

Illustration of the 
hydro-dynamic instability
of a slightly undulated flame

Gas expansion in the flame front lead to a deflection of a stream line that enters the 
front with an angle. 
A stream tube with cross-sectional area A0 and upstream flow velocity u-f widens
due to flow divergence ahead of the flame. 
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Expansion at the front induces 
a flow component normal to 
the flame contour. 
As the stream lines cross the front 
they are deflected. 

At large distances from the front 
the stream lines are parallel again, 
but the downstream velocity is 

At a cross section A1, where the density is still equal to Uu the flow velocity due to 
continuity and the widening of the stream tube is
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The unperturbed flame propagates 
with 

normal to itself . 
The burning velocity is larger than u1

and the flame propagates upstream 
and thereby enhances the 
initial perturbation.

Simplification:  
Viscosity, gravity and compressibility in the burnt and unburnt gas are neglected.
Density is discontinuous at the flame front. 
The influence of the flame curvature on the burning velocity is retained, 
flame stretch due to flow divergence is neglected.
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The burning velocity is given by

Reference values for length, time, density, pressure:

Introduce the density rate:

Dimensionless variables:
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The non-dimensional governing equations are then 
(with the asterisks removed)

where Uu= 1 and U= r in the unburnt and burnt mixture respectively.

If G is a measure of the distance to the flame front, the G-field is described by:
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With equations 

the normal vector n and the normal propagation velocity then are
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Due to the discontinuity in density at the flame front, the Euler equations 

are only valid on either side of the front, but do not hold across it. 
Therefore jump conditions for mass and momentum conservation across the 
discontinuity are introduced [Williams85,p. 16]:

The subscripts + and - refer to the burnt and the unburnt gas and denote the properties 
immediately downstream and upstream of the flame front.
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In terms of the u and v components the jump conditions read

Under the assumption of small perturbations of the front, with H << 1 the unknowns 
are expanded as
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Jump conditions to leading order

and to first order

where the leading order mass flux has been set equal to one:
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With the coordinate transformation

we fix the discontinuity at [ = 0. 

To first order the equations for the perturbed quantities on both sides of the flame 
front now read

where U�= 1 for [ < 0 (unburnt gas) and U = r for [ > 0 (burnt gas) is to be used.

In case of instability perturbations which are initially periodic in the K-direction and 
vanish for [ o ± f would increase with time.
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Since the system is linear, the solution may be written as

where V is the non-dimensional growth rate, k the non-dimensional wave number and 
i the imaginary unit.

Introducing this into the first order equations the linear system may be written as

The matrix  A is given by
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The eigenvalues of A are obtained by setting det(A) = 0. 

This leads to the characteristic equation

Here again U = 1/r, U = r for [ > 0 and U = 1,  U = 1 for [ < 0. 

There are three solutions to the characteristic equation for the
eigenvalues Dj,  j = 1,2,3.

Positive values of  Dj satisfy the upstream ([ < 0) and negative values the downstream 
([ > 0) boundary conditions of the Euler equations. 
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Therefore

Introducing the eigenvalues into                    again, the corresponding eigenvectors 
w0,j,  j = 1,2,3 are calculated to
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In terms of the original unknowns  u, v and the solution is now

For the perturbation f (K, W)  the form

will be introduced.
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Inserting 

and 

into the non-dimensional G-equation

satisfies to leading order with

and x = 0- ,  x = 0+ respectively.
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This leads to first order to

With 

the jump conditions 

can be written as
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The system

then reads
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Since equation 

is linear dependent from equations 

it is dropped and the equations 

and

remain for the determination of a, b, c and V(k).
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Dividing all equations by        one obtains four equations for

The elimination of the first three unknown yields the equation

The solution may be written in terms of dimensional quantities as

Here only the positive root has been taken, since it refers to possible solutions with 
exponential growing amplitudes.
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The relation

is the dispersion relation which shows that the perturbation f grows exponentially in 
time only for a certain wavenumber range 0 < k < k* .

Here k* is the wave number of which M�= 0 in 

which leads to
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For perturbations at wave numbers k > k* a plane flame of infinitively small 
thickness, described as a discontinuity in density, velocity and pressure is 
unconditionally stable. 

This is due to the influence of the front curvature on the burning velocity. 

As one would expect on the basis of simple thermal theories of flame propagation, 
the burning velocity increases when the flame front is concave and decreases when 
it is convex towards the unburnt gas, so that initial perturbations are smoothen.
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However, hydrodynamic and curvature effects are not the only influencing factors 
for flame front stability. 

Flame stretch due to flow divergence, gravity (in a downward propagating
flame) and the thermo-diffusive effect with a Lewis number larger unity are
stabilizing effects. 

A more detailed discussion of these phenomena may be found in [Clavin85]
and [Williams85].
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Exercise

Under the assumption of a constant burning velocity sL = sL0 the linear stability 
analysis leads to the following dispersion relation

Validate this expression by inserting 

What is the physical meaning of this result? 
What effect has the front curvature on the flame front stability?
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Solution

The dispersion relation for constant burning velocity sL = sL0, 

shows that the perturbation F grows exponentially in time for all wave numbers. 

The growth V is  proportional to the wave number k and always positive since the 
density rate r is less than unity. 

This means that a plane flame front with constant burning velocity is unstable to any
perturbation. 
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The front curvature has a stabilizing effect on the flame front stability. 

As it is shown in the last section, the linear stability analysis for a burning 
velocity with the curvature effect retained leads to instability of the front only 
for the wave number range 

whereas the front is stable to all perturbations with k > k*.
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