Course Name
|
Turkish |
Dinamik
|
English |
Dynamics |
Course Code
|
DNK 201E |
Credit |
Lecture
(hour/week) |
Recitation
(hour/week) |
Laboratory
(hour/week) |
Semester |
-
|
3 |
3 |
- |
- |
Course Language |
English |
Course Coordinator |
Zeynep Değer
|
Course Objectives |
Be able to construct idealized (particle and rigid body) dynamical models and predict model response to applied forces using Newtonian mechanics. More specifically:
• Describe and predict the motion experienced by inertial and non-inertial observers
• Understand central force motion
• Understand the basic principles of 2D Rigid Body Motion
• Formulate the equations of Motion of 3D Rigid Bodies
• Understand the simple vibration analysis of a rigid body.
|
Course Description |
Definitions and principal axioms. Kinematics of particiles. Linear, plane and general motions. Relative motion. Kinetics of particles. Newton’s laws. Impuls and momentum principle. Work and Energy. Motion with resistance. Central-force Motion systems of particles. Collision. Variablesmass. Kinematics of Rigid Bodies. Kinetics of Rigid Bodies. Work and Energy, Impulse and momentum. Fixed-Axis rotation of rigit body. Plane motion of rigid body. Vibration of rigid body . Relative motion.
|
Course Outcomes |
On completing this course students should :
1. To be able to select and use an appropriate coordinate system to describe particle motion (a3,e3,f1,h1,i1,k1)*
2. To be able to describe particle motion using intermediate reference frames, which can be in relative motion (including rotation) with respect to each other (a3,e3,f1,h1,i1,k1)*
3. To be able to formulate dynamic models in accelerating frames (a3,c1,e3,f1,h1,i1,j1,k1)*
4. To be able to identify and exploit situations in which integrated forms of the equations of motion, yielding conservation of momentum and/or energy for to the particles, can be used (a3,c1,e3,f1,h1,i1,j1,k1)*
5. To be able to identify and exploit situations in which integrated forms of the equations of motion, yielding conservation of momentum and/or energy for to the rigid bodies, can be used (a3,c1,e3,f1,h1,i1,j1,k1)*
6. To be able to formulate and analyze dynamic models for the rigid bodies in plane motion (a3,c1,e3,f1,h1,i1,j1,k1)*
7. To be able to formulate and analyze dynamic models for the rigid bodies in three dimensions (a3,c1,e3,f1,h1,i1,j1,k1)*
8. Utilize 2-body orbital mechanics to analyze space trajectories (a3,c1,e3,f1,h1,i1,j1,k1)*
9. Model and analyze simple problems involving vibration with and without damping (a3,c1,e3,f1,h1,i1,j1,k1)* |
Pre-requisite(s) |
FIZ101 and MAT101 |
Required Facilities |
Scientific calculator |
Other |
|
Textbook |
Hibbeler, R. C., Engineering Mechanics – Dynamics SI Edition, Prentice Hall, 2002. |
Other References |
Meriam, J.L., Kraige, L.G., Engineering Mechanics, Wiley , SI Version, 3rd ed., 1993.
Huang ,Dynamics.
Riley, W.F., and Sturges, L.D., Engineering Mechanics: Dynamics, Wiley, 1996.
Riley, W.F., and Sturges, L.D., Engineering Mechanics: Dynamics, 2nd ed. and Dynamics Software for Student Set, Wiley, 1996.
Riley, W.F., and Sturges, L.D., Engineering Mechanics: Dynamics, 2nd ed. and Statics
and Mechanics of Materials: An Integrated Approach Set, Wiley, 1996.
Şuhubi, E., Dinamik.
Beer, F.P. and Johnston, E.R., Vector Mechanics for Engineers: Dynamics, 5th ed., McGraw-Hill, 1996. |
|
|