Hoşgeldiniz,
Misafir
.
Oturum Aç
.
English
NİNOVA
DERSLER
YARDIM
HAKKINDA
Neredeyim:
Ninova
/
Dersler
/
FenEdebiyat Fakültesi
/
MAT 342E
/
Dersin Bilgileri
Fakülteye dön
Ana Sayfa
Dersin Bilgileri
Dersin Haftalık Planı
Değerlendirme Kriterleri
Dersin Bilgileri
Dersin Adı
Türkçe
Diferansiyel Geometry
İngilizce
Differantial Geometry
Dersin Kodu
MAT 342E
Kredi
Ders
(saat/hafta)
Uygulama
(saat/hafta)
Labratuvar
(saat/hafta)
Dönem
6
3
3


Dersin Dili
İngilizce
Dersin Koordinatörü
Füsun Zengin
Dersin Amaçları
1. To give the student essentials of curves and surfaces in 3dimension,
2. To reinforce their advanced calculus and linear algebra knowledge and to give an ability to apply this knowledge on geometry problems
Dersin Tanımı
Differential geometry of curves; osculating plane, curvature and torsion, Frenet?s trihedral, Frenet?s formulas, osculating sphere. Helices, involutes and evolutes, Bertrand?s curves. Natural equations, the fundamental theorem of the theory of curves. Differential geometry of surfaces; first and second fundamental forms of a surface, normal curvature, the lines of curvature, asymptotic curves, Dupin indicatrix, Meunier?s theorem, mean curvature, Gaussian curvature. Gauss?s Theorema Egregium.
Dersin Çıktıları
Students completing this course will be able to :
I. understand the definition of the regular curve, vector field along the curve, know how to derive the formula for the length of a curve, and be able to operate with parametric and nonparametric forms of a curve, parameterize a curve by arc length,
II. know the definitions tangent, normal, binormal vectors, spherical curves, tangent line, normal line, binormal line and the definitions of tangent plane, osculating plane and rectifying plane,
III. calculate the Frenet quantities for a given smooth curve in R^3 calculate curvature and torsion understand what these quantities say about the general shape of a curve and how they characterize certain classes of simple curves
IV. be familiar with the following concepts: Helices, involutes and evolutes, Bertrand?s curves and the fundamental theorem of curves,
V. understand the concept of a surface and their classification, calculate the first and second fundamental forms and calculates the principal directions at a point
VI. calculates various curvatures and lines of curvature of a surface understand the concepts of Mean and Gauss curvatures of a surface.
Önkoşullar
Gereken Olanaklar
Diğer
Ders Kitabı
Diğer Referanslar
Dersler
.
Yardım
.
Hakkında
Ninova, İTÜ Bilgi İşlem Daire Başkanlığı ürünüdür. © 2020