Hoşgeldiniz,
Misafir
.
Oturum Aç
.
English
NİNOVA
DERSLER
YARDIM
HAKKINDA
Neredeyim:
Ninova
/
Dersler
/
KimyaMetalurji Fakültesi
/
GID 204E
/
Dersin Bilgileri
Fakülteye dön
Ana Sayfa
Dersin Bilgileri
Dersin Haftalık Planı
Değerlendirme Kriterleri
Dersin Bilgileri
Dersin Adı
Türkçe
Momentum Aktarımı
İngilizce
Momentum Transfer
Dersin Kodu
GID 204E
Kredi
Ders
(saat/hafta)
Uygulama
(saat/hafta)
Labratuvar
(saat/hafta)
Dönem
4
3
3


Dersin Dili
İngilizce
Dersin Koordinatörü
Filiz Altay
Dersin Amaçları
The objective of this course is to introduce the engineering students to the fundamental principles of fluid mechanics and momentum transfer. The emphasis is on the basics of fluid static and fluid motion, with applications generally selected from food processing. It is the intent of this course to show how the basic laws of fluid mechanics (fluid static; conservation of mass, energy and momentum) can be applied in an organized and systematic manner to the solution of practical (food) engineering problems. Ultimately, the student should acquire the knowledge and skill required to find solutions to practical fluid flow problems.
Dersin Tanımı
Introduction to fluid flow
Basic concepts
Basic laws, dimensions and units,
Conservation of dimensions, dimensional analysis
Rheological properties of fluids
Classification of materials and fluid properties
Types of flow behavior
Temperature dependency of viscosity
Fluid statics, stress and pressure, basic equation of fluid statics
Conservation principles: conservation of mass, conservation of energy
Conservation of momentum
Shellmomentum balance on fluid flow problems, derivation of velocity profiles in flow field with different geometries
Pipe flow: flow regimes, Newtonian fluids flow, NonNewtonain fluid flow
Internal flow applications: friction losses in pipes, valves and fittings; calculation of pump requirements
Pumps
Flow measurement and control: pitot tube, venturi and nozzle, orifice meter, control valves
Flow passed immersed objects drag coefficient, falling particles, flow in packed beds, fluidization and fluidized beds
Application of momentum transfer principles in food processing: agitation, mixing, extrusion
Differential analysis of fluid flow, NavierStokes equations
Dersin Çıktıları
1. Analyze forces and pressures for static fluid problems.
2. Recognize and apply appropriate conservation equations to analyze steady flowing fluid problems.
3. Apply energy and momentum equations to determine velocities and forces. Perform drag force calculations.
4. Perform dimensional analysis and apply principles of similitude to a given fluid and flow problem.
5. Use energy equation to predict flow characteristics and calculate pressure drop at and across all types of flow circuits and its pipes and other components.
6. Apply energy balance principles in order to determine the required pumps.
7. Apply basic principles of fluid mechanics to packedbed and fluidized bed problems.
8. Be able to apply principles of fluid mechanics to different flow problems.
Önkoşullar
MAT102/MAT102E min DD or
MAT104/MAT104E min DD or
MAT201/MAT201E min DD or
MAT210/MAT201E min DD or
FIZ 101/FIZ101E min DD
Gereken Olanaklar
Diğer
Ders Kitabı
1. R.W. Fox & A.T. McDonald. 1994. Introduction to Fluid Mechanics, John Wiley & Sons Inc. (Available in the library reserve section).
2. Şahin, S., Şumnu, S.G., Hamamcı, H., İşçi, A., Şakıyan, Ö. 2016. Fluid Flow, Heat and Mass Transfer in Food Systems, Nobel Akademik Yayıncılık, Ankara.
3. Geankoplis, C. J. 2003. Transport processes and separation process principles: (includes unit operations). PTR Prentice, Hall (Electronic source available from ITU Library) (First 3 chapters)
Diğer Referanslar
1. Çengel, Y.A., Cimbala, J.M. 2015. Akışkanlar Mekaniği. Palme Yayıncılık, Ankara.
2. Steffe, J.F. 1996. Rheological Methods in Food Process Engineering. Freeman Press, Michigan.
3. White, F.M. 1994. Fluid Mechanics, McGrawHill, New York.
4. Mudson, B.R., Young, D.F., Okiishi, T.H. 1994. Fundamentals of fluid mechanics. Wiley, New York.
5. Darby, R. 1996. Chemical Engineering Fluid Mechanics, Marcel Dekker, Inc.
6. Bird, R. B., Stewart W.E. & Lightfoot, E.N. 2002. Transport Phenomena, John Wiley & Sons Inc.
Dersler
.
Yardım
.
Hakkında
Ninova, İTÜ Bilgi İşlem Daire Başkanlığı ürünüdür. © 2020